移動邊緣計算中計算卸載和資源分配協(xié)同優(yōu)化策略設(shè)計與實現(xiàn)_第1頁
移動邊緣計算中計算卸載和資源分配協(xié)同優(yōu)化策略設(shè)計與實現(xiàn)_第2頁
移動邊緣計算中計算卸載和資源分配協(xié)同優(yōu)化策略設(shè)計與實現(xiàn)_第3頁
移動邊緣計算中計算卸載和資源分配協(xié)同優(yōu)化策略設(shè)計與實現(xiàn)_第4頁
移動邊緣計算中計算卸載和資源分配協(xié)同優(yōu)化策略設(shè)計與實現(xiàn)_第5頁
已閱讀5頁,還剩4頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

移動邊緣計算中計算卸載和資源分配協(xié)同優(yōu)化策略設(shè)計與實現(xiàn)移動邊緣計算中計算卸載和資源分配協(xié)同優(yōu)化策略設(shè)計與實現(xiàn)

摘要:隨著移動互聯(lián)網(wǎng)的快速發(fā)展,移動設(shè)備在人們的日常生活中扮演著越來越重要的角色。然而,移動設(shè)備的計算能力和存儲能力有限,無法滿足越來越復(fù)雜的應(yīng)用需求。同時,移動網(wǎng)絡(luò)的帶寬和延遲也限制了移動設(shè)備在處理大規(guī)模數(shù)據(jù)時的效率。因此,移動邊緣計算應(yīng)運而生,使用邊緣節(jié)點的計算資源和存儲資源來處理數(shù)據(jù)。計算卸載和資源分配是移動邊緣計算的關(guān)鍵問題之一。本文針對移動邊緣計算中計算卸載和資源分配問題,提出一種協(xié)同優(yōu)化策略,并實現(xiàn)了相應(yīng)的算法。首先,通過對移動設(shè)備的資源需求和邊緣節(jié)點的負(fù)載情況進(jìn)行監(jiān)測和分析,建立了一種資源分配模型;然后,為了降低計算卸載帶來的通信開銷,提出了一種基于機器學(xué)習(xí)的計算卸載決策算法。最后,在移動邊緣計算環(huán)境下,通過仿真實驗驗證了所提出算法的可行性和有效性。

關(guān)鍵詞:移動邊緣計算;計算卸載;資源分配;機器學(xué)習(xí);協(xié)同優(yōu)化

ABSTRACT:Withtherapiddevelopmentofmobileinternet,mobiledevicesareplayinganincreasinglyimportantroleinpeople'sdailylives.However,thecomputingpowerandstoragecapacityofmobiledevicesarelimitedandcannotmeettheincreasinglycomplexapplicationrequirements.Atthesametime,thebandwidthandlatencyofmobilenetworksalsolimittheefficiencyofmobiledevicesinhandlinglarge-scaledata.Therefore,mobileedgecomputing(MEC)hasemerged,whichusesthecomputingandstorageresourcesofedgenodestoprocessdata.Computingoffloadingandresourceallocationareoneofthekeyissuesinmobileedgecomputing.Inthispaper,weproposeacollaborativeoptimizationstrategyforcomputingoffloadingandresourceallocationinmobileedgecomputingandimplementthecorrespondingalgorithm.First,aresourceallocationmodelisestablishedbymonitoringandanalyzingtheresourcerequirementsofmobiledevicesandtheloadofedgenodes.Then,acomputingoffloadingdecisionalgorithmbasedonmachinelearningisproposedtoreducethecommunicationoverheadcausedbycomputingoffloading.Finally,thefeasibilityandeffectivenessoftheproposedalgorithmareverifiedthroughsimulationexperimentsinthemobileedgecomputingenvironment.

KEYWORDS:mobileedgecomputing;computingoffloading;resourceallocation;machinelearning;collaborativeoptimizationMobileedgecomputing(MEC)isapromisingtechnologythatenablestheoffloadingofcomputationallyintensivetasksfrommobiledevicestonearbyedgenodes.Thisapproachcanreducetheenergyconsumptionandresponsetimeofmobiledevices,aswellaspromoteefficientresourceutilization.However,theoffloadingdecisionalgorithmiscriticaltoachievingthesebenefits.

Theprimarychallengeoftheoffloadingdecisionalgorithmistobalancetheresourcerequirementsofmobiledevicesandtheloadofedgenodes.Mobiledeviceshavelimitedcomputationalresourcesandbatterypower,whileedgenodeshavelimitedprocessingcapacityandenergyresources.Moreover,theheterogeneityofmobiledevicesandedgenodesandthedynamicchangesofnetworkconditionsfurthercomplicatetheproblem.

Toaddressthischallenge,acomputingoffloadingdecisionalgorithmbasedonmachinelearningisproposed.Thealgorithmutilizesacollaborativeoptimizationframeworktojointlyoptimizetheresourceallocationandoffloadingdecision.Theresourceallocationisbasedontheresourcerequirementsofmobiledevicesandtheresourceavailabilityofedgenodes.Theoffloadingdecisionisbasedonthepredictedexecutiontimeandenergyconsumptionofdifferentoffloadingstrategiesusingmachinelearningmodels.

Specifically,theproposedalgorithmincludesthreemainsteps.Firstly,theresourcerequirementsandavailabilityareestimatedbasedontheinformationcollectedfrommobiledevicesandedgenodes.Secondly,themachinelearningmodelsaretrainedusinghistoricaldataandusedtopredicttheexecutiontimeandenergyconsumptionofdifferentoffloadingstrategies.Finally,acollaborativeoptimizationalgorithmisemployedtodeterminetheoptimaloffloadingstrategy,takingintoaccounttheresourceallocationandpredictedperformance.

SimulationexperimentsareconductedtoevaluatethefeasibilityandeffectivenessoftheproposedalgorithminaMECenvironment.Theresultsshowthatthealgorithmcanachievesignificantimprovementsintermsofenergyconsumption,responsetime,andresourceutilization,comparedtoexistingapproaches.TheproposedalgorithmcanbepotentiallyappliedtovariousMECscenariosandprovideamoreefficientandintelligentoffloadingdecisionmechanismformobiledevicesMEC(MobileEdgeComputing)hasbecomeanimportantresearchdirectioninthefieldofmobilecomputinginrecentyears.Itisanewcomputingparadigmthatbringscomputingandstorageresourcesclosertotheedgeofthenetwork,enablingmobiledevicestoaccesspowerfulcomputingcapabilitieswhilereducinglatencyandimprovingnetworkefficiency.Withtheincreasingdemandformobileservices,theoptimizationofresourceallocationandtaskoffloadinginMECenvironmentshasbecomeachallengingresearchtopic.

Inthiscontext,anovelalgorithmfortaskoffloadingandresourceallocationinMECenvironmentshasbeenproposed,whichtakesintoaccounttheenergyconsumption,responsetime,andresourceutilizationofmobiledevices.Theproposedalgorithmisbasedonamulti-objectiveoptimizationmodel,whichconsidersthetrade-offsbetweenthesethreefactorsandobtainsasetofPareto-optimalsolutions.Areinforcementlearningalgorithmisthenusedtoselectthemostappropriatesolutionbasedonthecurrentenvironmentanddeviceperformance.

SimulationexperimentshavebeenconductedtoevaluatetheperformanceoftheproposedalgorithminaMECenvironment.Theresultsshowthatthealgorithmoutperformsexistingapproachesintermsofenergyconsumption,responsetime,andresourceutilization.Theproposedalgorithmachievesahigherenergyefficiencyandalowerresponsetimeformobiledevices,whilealsoimprovingtheutilizationofavailableresources.

Moreover,theproposedalgorithmisapplicabletoawiderangeofMECscenariosandcanprovideanefficientandintelligentoffloadingdecisionmechanismformobiledevices.Thealgorithmcanoptimizethetaskoffloadingandresourceallocationinreal-time,consideringthedynamicchangesinthenetworkenvironment,theworkloadofmobiledevices,andtheavailabilityofcomputingandstorageresourcesattheedgeofthenetwork.

Inconclusion,theproposedalgorithmrepresentsasignificantcontributiontothefieldofmobilecomputingandMEC.ItprovidesacomprehensiveandeffectivesolutiontotheresourceallocationandtaskoffloadingprobleminMECenvironments,takingintoaccounttheenergyefficiency,responsetime,andresourceutilizationofmobiledevices.ItisexpectedthattheproposedalgorithmwillbewidelyadoptedinpracticalapplicationsandcontributetothedevelopmentofMEC-basedmobileservicesInadditiontothepracticalapplicationsoftheproposedalgorithminMECenvironments,thereareseveraltheoreticalcontributionsthatcanbemadetothefieldofmobilecomputing.Firstly,thealgorithmprovidesamoreefficientandeffectivewayofusingthelimitedresourcesofmobiledevicestoperformresource-intensivetasks.Thisisparticularlyimportantinsituationswheretheresourcesofthemobiledevicearelimited,suchasinlow-powerdevicesordeviceswithlimitedmemoryorprocessingpower.

Secondly,thealgorithmtakesintoaccounttheenergyefficiencyofmobiledeviceswhenmakingresourceallocationandtaskoffloadingdecisions.Thisisimportantinlightoftheincreasinguseofmobiledevicesandthecorrespondingincreaseinenergyconsumption.Byoptimizingtheallocationofresourcesandminimizingtheamountofenergyconsumedbymobiledevices,theproposedalgorithmmakesasignificantcontributiontothedevelopmentofsustainablemobileservices.

Thirdly,theproposedalgorithmconsiderstheresponsetimeofmobiledeviceswhenmakingresourceallocationandtaskoffloadingdecisions.Thisisimportantinsituationswherethelatencyofthemobiledevicecanimpactthequalityandreliabilityoftheservicebeingprovided.Byoptimizingtheallocationofresourcesandminimizingtheresponsetimeofmobiledevices,theproposedalgorithmensuresthatmobileservicesaredeliveredinatimelyandreliablemanner.

Finally,theproposedalgorithmmakesasignificantcontributiontothefieldofMECbyprovidingacomprehensiveandeffectivesolutiontotheresourceallocationandtaskoffloadingproblem.Thisisanimportantresearchtopicinthefieldofmobilecomputing,andtheproposedalgorithmprovidesanovelandeffectiveapproachthatcanbeusedin

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論