版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
移動邊緣計算中計算卸載和資源分配協(xié)同優(yōu)化策略設(shè)計與實現(xiàn)移動邊緣計算中計算卸載和資源分配協(xié)同優(yōu)化策略設(shè)計與實現(xiàn)
摘要:隨著移動互聯(lián)網(wǎng)的快速發(fā)展,移動設(shè)備在人們的日常生活中扮演著越來越重要的角色。然而,移動設(shè)備的計算能力和存儲能力有限,無法滿足越來越復(fù)雜的應(yīng)用需求。同時,移動網(wǎng)絡(luò)的帶寬和延遲也限制了移動設(shè)備在處理大規(guī)模數(shù)據(jù)時的效率。因此,移動邊緣計算應(yīng)運(yùn)而生,使用邊緣節(jié)點的計算資源和存儲資源來處理數(shù)據(jù)。計算卸載和資源分配是移動邊緣計算的關(guān)鍵問題之一。本文針對移動邊緣計算中計算卸載和資源分配問題,提出一種協(xié)同優(yōu)化策略,并實現(xiàn)了相應(yīng)的算法。首先,通過對移動設(shè)備的資源需求和邊緣節(jié)點的負(fù)載情況進(jìn)行監(jiān)測和分析,建立了一種資源分配模型;然后,為了降低計算卸載帶來的通信開銷,提出了一種基于機(jī)器學(xué)習(xí)的計算卸載決策算法。最后,在移動邊緣計算環(huán)境下,通過仿真實驗驗證了所提出算法的可行性和有效性。
關(guān)鍵詞:移動邊緣計算;計算卸載;資源分配;機(jī)器學(xué)習(xí);協(xié)同優(yōu)化
ABSTRACT:Withtherapiddevelopmentofmobileinternet,mobiledevicesareplayinganincreasinglyimportantroleinpeople'sdailylives.However,thecomputingpowerandstoragecapacityofmobiledevicesarelimitedandcannotmeettheincreasinglycomplexapplicationrequirements.Atthesametime,thebandwidthandlatencyofmobilenetworksalsolimittheefficiencyofmobiledevicesinhandlinglarge-scaledata.Therefore,mobileedgecomputing(MEC)hasemerged,whichusesthecomputingandstorageresourcesofedgenodestoprocessdata.Computingoffloadingandresourceallocationareoneofthekeyissuesinmobileedgecomputing.Inthispaper,weproposeacollaborativeoptimizationstrategyforcomputingoffloadingandresourceallocationinmobileedgecomputingandimplementthecorrespondingalgorithm.First,aresourceallocationmodelisestablishedbymonitoringandanalyzingtheresourcerequirementsofmobiledevicesandtheloadofedgenodes.Then,acomputingoffloadingdecisionalgorithmbasedonmachinelearningisproposedtoreducethecommunicationoverheadcausedbycomputingoffloading.Finally,thefeasibilityandeffectivenessoftheproposedalgorithmareverifiedthroughsimulationexperimentsinthemobileedgecomputingenvironment.
KEYWORDS:mobileedgecomputing;computingoffloading;resourceallocation;machinelearning;collaborativeoptimizationMobileedgecomputing(MEC)isapromisingtechnologythatenablestheoffloadingofcomputationallyintensivetasksfrommobiledevicestonearbyedgenodes.Thisapproachcanreducetheenergyconsumptionandresponsetimeofmobiledevices,aswellaspromoteefficientresourceutilization.However,theoffloadingdecisionalgorithmiscriticaltoachievingthesebenefits.
Theprimarychallengeoftheoffloadingdecisionalgorithmistobalancetheresourcerequirementsofmobiledevicesandtheloadofedgenodes.Mobiledeviceshavelimitedcomputationalresourcesandbatterypower,whileedgenodeshavelimitedprocessingcapacityandenergyresources.Moreover,theheterogeneityofmobiledevicesandedgenodesandthedynamicchangesofnetworkconditionsfurthercomplicatetheproblem.
Toaddressthischallenge,acomputingoffloadingdecisionalgorithmbasedonmachinelearningisproposed.Thealgorithmutilizesacollaborativeoptimizationframeworktojointlyoptimizetheresourceallocationandoffloadingdecision.Theresourceallocationisbasedontheresourcerequirementsofmobiledevicesandtheresourceavailabilityofedgenodes.Theoffloadingdecisionisbasedonthepredictedexecutiontimeandenergyconsumptionofdifferentoffloadingstrategiesusingmachinelearningmodels.
Specifically,theproposedalgorithmincludesthreemainsteps.Firstly,theresourcerequirementsandavailabilityareestimatedbasedontheinformationcollectedfrommobiledevicesandedgenodes.Secondly,themachinelearningmodelsaretrainedusinghistoricaldataandusedtopredicttheexecutiontimeandenergyconsumptionofdifferentoffloadingstrategies.Finally,acollaborativeoptimizationalgorithmisemployedtodeterminetheoptimaloffloadingstrategy,takingintoaccounttheresourceallocationandpredictedperformance.
SimulationexperimentsareconductedtoevaluatethefeasibilityandeffectivenessoftheproposedalgorithminaMECenvironment.Theresultsshowthatthealgorithmcanachievesignificantimprovementsintermsofenergyconsumption,responsetime,andresourceutilization,comparedtoexistingapproaches.TheproposedalgorithmcanbepotentiallyappliedtovariousMECscenariosandprovideamoreefficientandintelligentoffloadingdecisionmechanismformobiledevicesMEC(MobileEdgeComputing)hasbecomeanimportantresearchdirectioninthefieldofmobilecomputinginrecentyears.Itisanewcomputingparadigmthatbringscomputingandstorageresourcesclosertotheedgeofthenetwork,enablingmobiledevicestoaccesspowerfulcomputingcapabilitieswhilereducinglatencyandimprovingnetworkefficiency.Withtheincreasingdemandformobileservices,theoptimizationofresourceallocationandtaskoffloadinginMECenvironmentshasbecomeachallengingresearchtopic.
Inthiscontext,anovelalgorithmfortaskoffloadingandresourceallocationinMECenvironmentshasbeenproposed,whichtakesintoaccounttheenergyconsumption,responsetime,andresourceutilizationofmobiledevices.Theproposedalgorithmisbasedonamulti-objectiveoptimizationmodel,whichconsidersthetrade-offsbetweenthesethreefactorsandobtainsasetofPareto-optimalsolutions.Areinforcementlearningalgorithmisthenusedtoselectthemostappropriatesolutionbasedonthecurrentenvironmentanddeviceperformance.
SimulationexperimentshavebeenconductedtoevaluatetheperformanceoftheproposedalgorithminaMECenvironment.Theresultsshowthatthealgorithmoutperformsexistingapproachesintermsofenergyconsumption,responsetime,andresourceutilization.Theproposedalgorithmachievesahigherenergyefficiencyandalowerresponsetimeformobiledevices,whilealsoimprovingtheutilizationofavailableresources.
Moreover,theproposedalgorithmisapplicabletoawiderangeofMECscenariosandcanprovideanefficientandintelligentoffloadingdecisionmechanismformobiledevices.Thealgorithmcanoptimizethetaskoffloadingandresourceallocationinreal-time,consideringthedynamicchangesinthenetworkenvironment,theworkloadofmobiledevices,andtheavailabilityofcomputingandstorageresourcesattheedgeofthenetwork.
Inconclusion,theproposedalgorithmrepresentsasignificantcontributiontothefieldofmobilecomputingandMEC.ItprovidesacomprehensiveandeffectivesolutiontotheresourceallocationandtaskoffloadingprobleminMECenvironments,takingintoaccounttheenergyefficiency,responsetime,andresourceutilizationofmobiledevices.ItisexpectedthattheproposedalgorithmwillbewidelyadoptedinpracticalapplicationsandcontributetothedevelopmentofMEC-basedmobileservicesInadditiontothepracticalapplicationsoftheproposedalgorithminMECenvironments,thereareseveraltheoreticalcontributionsthatcanbemadetothefieldofmobilecomputing.Firstly,thealgorithmprovidesamoreefficientandeffectivewayofusingthelimitedresourcesofmobiledevicestoperformresource-intensivetasks.Thisisparticularlyimportantinsituationswheretheresourcesofthemobiledevicearelimited,suchasinlow-powerdevicesordeviceswithlimitedmemoryorprocessingpower.
Secondly,thealgorithmtakesintoaccounttheenergyefficiencyofmobiledeviceswhenmakingresourceallocationandtaskoffloadingdecisions.Thisisimportantinlightoftheincreasinguseofmobiledevicesandthecorrespondingincreaseinenergyconsumption.Byoptimizingtheallocationofresourcesandminimizingtheamountofenergyconsumedbymobiledevices,theproposedalgorithmmakesasignificantcontributiontothedevelopmentofsustainablemobileservices.
Thirdly,theproposedalgorithmconsiderstheresponsetimeofmobiledeviceswhenmakingresourceallocationandtaskoffloadingdecisions.Thisisimportantinsituationswherethelatencyofthemobiledevicecanimpactthequalityandreliabilityoftheservicebeingprovided.Byoptimizingtheallocationofresourcesandminimizingtheresponsetimeofmobiledevices,theproposedalgorithmensuresthatmobileservicesaredeliveredinatimelyandreliablemanner.
Finally,theproposedalgorithmmakesasignificantcontributiontothefieldofMECbyprovidingacomprehensiveandeffectivesolutiontotheresourceallocationandtaskoffloadingproblem.Thisisanimportantresearchtopicinthefieldofmobilecomputing,andtheproposedalgorithmprovidesanovelandeffectiveapproachthatcanbeusedin
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人住房維修基金擔(dān)保責(zé)任協(xié)議4篇
- 2025年金融機(jī)構(gòu)間協(xié)議存款風(fēng)險管理合同3篇
- 二零二五版汽車分期付款及二手車交易及售后服務(wù)合同3篇
- 2025版學(xué)?;顒又行淖赓U合同范本2篇
- 2025版出租車司機(jī)職業(yè)操守?fù)?dān)保合同2篇
- 2025版?zhèn)€人車輛抵押債權(quán)債務(wù)處理執(zhí)行條款4篇
- 2025年長沙考貨運(yùn)從業(yè)資格證駕校
- 2025年綠色建筑項目施工連帶責(zé)任保證合同4篇
- 2025餐飲拆伙協(xié)議書退伙后品牌使用權(quán)及保密協(xié)議3篇
- 卸車事故緊急處理與賠償協(xié)議2025年度3篇
- 中華人民共和國保守國家秘密法實施條例培訓(xùn)課件
- 管道坡口技術(shù)培訓(xùn)
- 2024年全國統(tǒng)一高考英語試卷(新課標(biāo)Ⅰ卷)含答案
- 2024年認(rèn)證行業(yè)法律法規(guī)及認(rèn)證基礎(chǔ)知識 CCAA年度確認(rèn) 試題與答案
- 皮膚儲存新技術(shù)及臨床應(yīng)用
- 外研版七年級英語上冊《閱讀理解》專項練習(xí)題(含答案)
- 2024年遼寧石化職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫必考題
- 上海市復(fù)旦大學(xué)附中2024屆高考沖刺模擬數(shù)學(xué)試題含解析
- 幼兒園公開課:大班健康《國王生病了》課件
- 小學(xué)六年級說明文閱讀題與答案大全
- 人教pep小學(xué)六年級上冊英語閱讀理解練習(xí)題大全含答案
評論
0/150
提交評論