版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
結(jié)構(gòu)力學學習內(nèi)容
結(jié)構(gòu)動力計算概念,動力計算自由度,建立體系的運動方程;單自由度體系的自由振動(頻率、周期和振幅的計算);單自由度體系在簡諧荷載作用下的的強迫振動(動內(nèi)力、動位移計算);阻尼對振動的影響;有限自由度體系的自由振動(頻率、振型及振型正交性);有限自由度體系在簡諧荷載作用下的強迫振動(動內(nèi)力、動位移計算);頻率、振型的近似計算方法。2學習目的和要求
目的:工程結(jié)構(gòu)除受靜荷載作用外,有時還會受到隨時間迅速變化的動荷載作用,如地震荷載等。在動荷載作用下,結(jié)構(gòu)發(fā)生振動,結(jié)構(gòu)的內(nèi)力、位移等將隨時間變化。確定它們的變化規(guī)律,從而得到這些量的最大值,以便做出合理的動力設(shè)計是本章的學習目的。
要求:掌握動力自由度的判別方法。掌握單自由度、有限自由度體系運動方程的建立方法。熟練掌握單自由度體系、兩個自由度體系動力特性的計算。熟練掌握單自由度體系、兩個自由度體系在簡諧荷載作用下動內(nèi)力、動位移的計算。掌握阻尼對振動的影響。了解自振頻率的近似計算方法。3由于動荷載使結(jié)構(gòu)產(chǎn)生了不容忽視的慣性力,其作用完全不能等同于將動載看作靜載計算所得的量值;這反映了動載對結(jié)構(gòu)更為不利的一面,對規(guī)模較大、較復(fù)雜的結(jié)構(gòu),尤其需要慎重考慮,合理地設(shè)計承受動力荷載的結(jié)構(gòu)。第一節(jié)結(jié)構(gòu)動力計算概述1、結(jié)構(gòu)動力學的計算特點51動荷載的定義結(jié)構(gòu)在大小方向和作用點隨時間變化的荷載作用下,質(zhì)量運動加速度所引起的慣性力(innertiaforce)和荷載相比達到不可忽視的程度時的荷載稱為動荷載(dynamicload)把荷載看成是靜荷載還是動荷載應(yīng)結(jié)合結(jié)構(gòu)本身的動特性加以判決2、動荷載及其分類第一節(jié)結(jié)構(gòu)動力計算概述62動荷載的分類動荷載確定不確定風荷載地震荷載其他無法確定變化規(guī)律的荷載周期非周期簡諧荷載非簡諧荷載沖擊荷載突加荷載其他確定規(guī)律的動荷載結(jié)構(gòu)振動分析隨機振動分析第一節(jié)結(jié)構(gòu)動力計算概述2、動荷載及其分類71結(jié)構(gòu)動力學和結(jié)構(gòu)靜力學的對比a.與靜力學對比增加了復(fù)雜性,需要處理微分問題。b.動響應(yīng)不僅與動荷載有關(guān),而且與結(jié)構(gòu)動特性有關(guān)。3、結(jié)構(gòu)動力學的任務(wù)和內(nèi)容2結(jié)構(gòu)動力學的任務(wù)
確定結(jié)構(gòu)動特性及結(jié)構(gòu)固有特性與動荷載、動響應(yīng)之間的關(guān)系;
為結(jié)構(gòu)動力可靠性設(shè)計和健康診斷提供依據(jù)。
確定結(jié)構(gòu)在任意荷載作用下進行響應(yīng)分析的方法。第一節(jié)結(jié)構(gòu)動力計算概述93結(jié)構(gòu)動力學的研究內(nèi)容
第一類問題:由輸入求輸出的結(jié)構(gòu)動力計算響應(yīng)分析;輸入(動力荷載)輸出(動力反應(yīng))結(jié)構(gòu)(系統(tǒng))第一節(jié)結(jié)構(gòu)動力計算概述3、動力學的任務(wù)和內(nèi)容10
第二類問題:由輸入、輸出求結(jié)構(gòu)特性的系統(tǒng)識別;參數(shù)識別輸入(動力荷載)結(jié)構(gòu)(系統(tǒng))輸出(動力反應(yīng))荷載識別輸入(動力荷載)輸出(動力反應(yīng))結(jié)構(gòu)(系統(tǒng))第一節(jié)結(jié)構(gòu)動力計算概述3、動力學的任務(wù)和內(nèi)容111動力分析體系的自由度動力分析的特點是要考慮慣性力,而慣性力取決于質(zhì)量分布和運動方向,因此在確定計算簡圖時,必須確定質(zhì)量分布情況,確定質(zhì)點位移形態(tài)。確定體系質(zhì)點位移形態(tài)所需的獨立參數(shù)的個數(shù)就稱自由度。實際結(jié)構(gòu)都是無限自由度體系,如按無限自由度體系分析這不僅導致分析困難,而且從工程角度也沒必要,故必須對結(jié)構(gòu)進行必要的簡化。4、動力分析體系的自由度第一節(jié)結(jié)構(gòu)動力計算概述132體系自由度的簡化1)集中質(zhì)量法(lumpedmass)
將實際結(jié)構(gòu)的質(zhì)量看成(按一定規(guī)則)集中在某些幾何點上,除這些點之外物體是無質(zhì)量的。這樣就將無限自由度系統(tǒng)變成一有限自由度系統(tǒng)。l第一節(jié)結(jié)構(gòu)動力計算概述4、動力分析體系的自由度14ll體系振動自由度為無限自由度忽略體系振動自由度為三個自由度忽略軸向運動忽略轉(zhuǎn)動慣量體系振動自由度為單自由度第一節(jié)結(jié)構(gòu)動力計算概述4、動力分析體系的自由度15y(x)l位移函數(shù)廣義座標單自由度l位移函數(shù)廣義座標二自由度第一節(jié)結(jié)構(gòu)動力計算概述4、動力分析體系的自由度2)廣義坐標法(generalcoordinate)173)有限元法(finiteelementmethod)ly1,1,y2,2,…1(x)2(x)將結(jié)構(gòu)劃分為有限個單元,通過單元分析得到單元剛度方程,組裝成整體剛度矩陣,適當將質(zhì)量分布于單元結(jié)點上,除這些點之外物體是無質(zhì)量的。這樣就將無限自由度系統(tǒng)變成一有限自由度系統(tǒng)。第一節(jié)結(jié)構(gòu)動力計算概述4、動力分析體系的自由度183體系自由度的確定
用有限元法或廣義座標法將無限自由度體系簡化為有限自由度體系時,體系的自由度數(shù)等于獨立結(jié)點位移數(shù)或廣義座標數(shù)。
對于集中質(zhì)量法簡化的有限自由度體系,在確定結(jié)構(gòu)動力自由度數(shù)時應(yīng)注意:(1)一般受彎結(jié)構(gòu)軸向變形忽略不計;(2)體系的自由度數(shù)并不總是等于集中質(zhì)點數(shù),而要根據(jù)具體情況確定。第一節(jié)結(jié)構(gòu)動力計算概述4、動力分析體系的自由度19確定體系動力自由度數(shù)與體系是否為靜定無關(guān)體系自由度數(shù)與計算精度有關(guān)靜定結(jié)構(gòu)超靜定結(jié)構(gòu)第一節(jié)結(jié)構(gòu)動力計算概述4、動力分析體系的自由度21結(jié)構(gòu)在動載作用下的響應(yīng)規(guī)律,與結(jié)構(gòu)的質(zhì)量分布、剛度分布及能量耗散等因素有關(guān)。由結(jié)構(gòu)自身物理量所確定、表征結(jié)構(gòu)動力特性的一些固有量稱結(jié)構(gòu)的動力特性(structuraldynamiccharacter)。外形相同但動力特性不同的兩個結(jié)構(gòu),在相同荷載作用下的響應(yīng)也不同;而外形不同但動力特性相同的兩個結(jié)構(gòu),在相同荷載作用下的響應(yīng)卻是相同的。5、結(jié)構(gòu)的動力特性第一節(jié)結(jié)構(gòu)動力計算概述221結(jié)構(gòu)的自振頻率結(jié)構(gòu)受到干擾會引起運動,但干擾取消后結(jié)構(gòu)將在平衡位置附近繼續(xù)振動,這種振動稱結(jié)構(gòu)的自由振動(freevibration)結(jié)構(gòu)振動方式的數(shù)目用體系自由度數(shù)確定;結(jié)構(gòu)振動的快慢用自振頻率來描述;自振頻率的順序排列稱頻率譜;頻率譜中最小的一個頻率稱基本頻率第一節(jié)結(jié)構(gòu)動力計算概述5、結(jié)構(gòu)的動力特性233結(jié)構(gòu)的阻尼無外部激勵的振動其振動幅度會逐漸減小,直至停止,這種現(xiàn)象稱衰減(decay)。振幅隨時間減小說明在振動中有能量損耗。
引起耗能的原因主要有:1.材料內(nèi)摩擦阻力2.環(huán)境介質(zhì)阻力3.連接處摩擦力4.地基土內(nèi)摩擦力稱這些耗能因素為阻尼(damping),它是動力分析的一個重要特性。第一節(jié)結(jié)構(gòu)動力計算概述5、結(jié)構(gòu)的動力特性25阻尼機理目前研究的并不充分,結(jié)構(gòu)往往存在幾種性質(zhì)不同的阻尼因素,為簡化計算我們采用一種普遍、常用的模型粘滯阻尼模型(viscousdamping)粘滯阻尼假設(shè):導致能量耗散是由于存在阻尼力,它和質(zhì)點運動速度方向相反,大小與速度成比例,比例系數(shù)稱阻尼系數(shù),其數(shù)值由試驗確定。根據(jù)這一假設(shè),單自由度的阻尼力為第一節(jié)結(jié)構(gòu)動力計算概述3結(jié)構(gòu)的阻尼5、結(jié)構(gòu)的動力特性261、單自由度體系運動方程
許多動力問題??砂磫巫杂啥润w系進行計算或進行初步估算
單自由度體系的分析是多自由度體系分析的基礎(chǔ)
許多概念由單自由度分析引出為什么要研究單自由度體系?第二節(jié)建立體系運動方程29mk水平運動模型mk豎向運動模型mkm第二節(jié)建立體系運動方程1、單自由度體系運動方程30mkcmkcFP(t)ysy=ys+yd靜平衡位
質(zhì)點的位移、速度和加速度是以向下為正。
mkc位移
displacement
速度
velocity
加速度
acceleration
ysyd第二節(jié)建立體系運動方程1、單自由度體系運動方程a列動力平衡方程(剛度法)31取質(zhì)點為研究對象建立動平衡方程
FP(t)FS(t)FI(t)FD(t)W振動與靜位移無關(guān),與重量無關(guān)(但與質(zhì)量有關(guān)),體系在靜力平衡位置做振動.第二節(jié)建立體系運動方程1、單自由度體系運動方程a列動力平衡方程(剛度法)32以彈簧端點為研究對象。分析它與質(zhì)塊連接點的位移kFS’(t)y由作用力和反作用力的關(guān)系FP(t)FS(t)FI(t)FD(t)W第二節(jié)建立體系運動方程1、單自由度體系運動方程b列位移方程(柔度法)33以靜平衡位置為起點列平衡方程和位移方程,所得的方程均與重力無關(guān),方程解出的是動位移方程。(對于水平振動情況,重力并不在運動方向產(chǎn)生靜位移,因此動位移即總位移
)與剛度法推出的運動方程相比較可見第二節(jié)建立體系運動方程1、單自由度體系運動方程b列位移方程(柔度法)34FP(t)mFP(t)m設(shè)質(zhì)量
m的位移為u,向右為正。用剛度法分析受力。問題是如何確定其中的剛度系數(shù)k。用力法、位移法或力矩分配法均可求得
第二節(jié)建立體系運動方程1、單自由度體系運動方程35值得注意的是:用剛度法建立運動方程,一般情況下都要求解超靜定結(jié)構(gòu)的靜力問題。兩種方法得出同一個結(jié)果,但是用哪個方法更簡潔一些;不同的題情況不一樣,要自己總結(jié)用柔度法,將所有外力作用于質(zhì)量
m,確定任意時刻質(zhì)點的位移y。FP=1m第二節(jié)建立體系運動方程1、單自由度體系運動方程36同一體系,激勵位置不同質(zhì)量m的運動方程是否相同?
FP(t)mFP(t)m物理意義?第二節(jié)建立體系運動方程1、單自由度體系運動方程37FP(t)mmFP(t)同一體系,激勵方向不同質(zhì)量m的運動方程是否相同?
第二節(jié)建立體系運動方程1、單自由度體系運動方程38
任意單自由度結(jié)構(gòu)的振動問題都可以抽象為質(zhì)量-彈簧-阻尼器體系,關(guān)鍵是確定質(zhì)量系數(shù)和彈簧剛度系數(shù)。結(jié)論
等效干擾力等于動載作用下附加約束上產(chǎn)生的支座反力,方向相反。
原則上剛度法和柔度法都可以建立運動方程,對具體問題,計算工作量是有差別的。故應(yīng)視情況靈活應(yīng)用。第二節(jié)建立體系運動方程(請附以例題)39
當體系為線彈性、阻尼為等效粘滯阻尼時,運動方程是二階非奇次常系數(shù)線性微分方程:
任意單自由度結(jié)構(gòu)的運動方程都可以表示成如下形式:該形式既適合等效粘滯阻尼和線彈性體系,也適合于其它阻尼和非線彈性體系。第二節(jié)建立體系運動方程40在實際工程中有些體系根據(jù)結(jié)構(gòu)特征必須簡化為多自由度(如多層結(jié)構(gòu)、不等高排架等);為保證計算精度要考慮采用多自由度模型(如煙囪、高聳建筑物)。而多自由度中最具代表性的、最簡單的當數(shù)兩自由度模型。
建立振動方程的方法:柔度法:按位移協(xié)調(diào)原則建立運動方程剛度法:按質(zhì)體平衡條件建立運動方程第二節(jié)建立體系運動方程2、多自由度體系運動方程41剛度法思路利用達朗貝爾原理引入慣性力,則質(zhì)點在某一時刻處于動平衡狀態(tài),列質(zhì)點平衡方程.ABFP(t)ABFP(t)FE1(t)FE2(t)k11y1k21y1ABFI1(t)k12y2k22y2ABFI2(t)第二節(jié)建立體系運動方程2、多自由度體系運動方程42其中以矩陣形式表示kij--剛度影響系數(shù)矩陣簡寫為:第二節(jié)建立體系運動方程2、多自由度體系運動方程43剛度法建立體系運動方程的具體步驟1、確定體系的自由度及各自由度方向的質(zhì)量,建立質(zhì)量矩陣M;2、用附加約束固定全部運動質(zhì)量;3、在外載作用下,計算附加約束上的約束反力,從而組成干擾力矩陣FP;4、由剛度系數(shù)定義形成剛度矩陣K;5、組成運動方程。第二節(jié)建立體系運動方程2、多自由度體系運動方程44柔度法思路利用達朗貝爾原理引入慣性力,由質(zhì)點在某一時刻形態(tài)狀態(tài)列質(zhì)點位移方程ABFP(t)11FP=12112FP=1221PFP=12P第二節(jié)建立體系運動方程2、多自由度體系運動方程45以矩陣形式表示ij
--柔度影響系數(shù)矩陣簡寫為:可以看到有:體系的剛度矩陣與柔度矩陣互為逆矩陣。這一結(jié)論對于任意多自由度體系都成立。第二節(jié)建立體系運動方程2、多自由度體系運動方程461、確定體系的自由度及各自由度方向的質(zhì)量,建立質(zhì)量矩陣M;2、計算在動外載作用下引起運動質(zhì)量的位移,從而組成位移矩陣P;3、由柔度系數(shù)定義形成柔度矩陣;4、組成運動方程。第二節(jié)建立體系運動方程柔度法建立體系運動方程的具體步驟2、多自由度體系運動方程47運動方程的一般形式剛度形式表示
柔度形式表示第二節(jié)建立體系運動方程2、多自由度體系運動方程48
剛度形式方程和柔度形式方程可以互換。但對于具體問題工作量可能不同。通常對于靜定結(jié)構(gòu),采用柔度法要簡單一些,而對于超靜定結(jié)構(gòu),采用剛度法較方便。注意
單自由度體系剛度系數(shù)和柔度系數(shù)互為倒數(shù)。多自由度體系剛度矩陣和柔度矩陣互為逆矩陣(其對應(yīng)系數(shù)不存在互為倒數(shù)關(guān)系)。
干擾力向量當動荷載直接作用于質(zhì)點時由動荷載按自由度順序組成;否則,由前述約束反力變號組成。
運動方程中的柔度矩陣和剛度矩陣并不完全等同于超靜定結(jié)構(gòu)靜力計算的柔度矩陣(力法)和剛度矩陣(位移法)。1、階數(shù)不同;2、系數(shù)意義不同;第二節(jié)建立體系運動方程49第二節(jié)建立體系運動方程3、建立體系運動方程示例例題:建立圖示體系的運動方程。mEIlEIl150第二節(jié)建立體系運動方程例題:建立圖示體系的運動方程。mEIl/2EIl/2151層間側(cè)移剛度:對于帶剛性橫梁的剛架(剪切型剛架),當兩層之間發(fā)生相對單位水平位移時,兩層之間的所有柱子中的剪力之和稱作該層的層間側(cè)移剛度。mEIlEIl1EIllEIEIEI第二節(jié)建立體系運動方程例題:建立圖示體系的運動方程。52第二節(jié)建立體系運動方程例題:建立圖示體系的運動方程。mEIl/2l/2W---P(t)引起的動位移---重力引起的位移質(zhì)點的總位移為加速度為列運動方程時可不考慮重力影響53m1m2=第二節(jié)建立體系運動方程例題:建立圖示體系的運動方程(剛度法)。54m1m2剛度矩陣第二節(jié)建立體系運動方程例題:建立圖示體系的運動方程(剛度法)。55第二節(jié)建立體系運動方程例題:建立圖示體系的運動方程(剛度法)。m1m256第二節(jié)建立體系運動方程例題:建立圖示體系的運動方程(柔度法)。m1m257第二節(jié)建立體系運動方程例題:建立圖示體系的運動方程(柔度法)。m1m258例題:不考慮桿件的軸向變形,不考慮阻尼,建立圖示剛架的運動方程lFP(t)l/2l/2mmFP(t)mmFI1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024集成電路設(shè)計及知識產(chǎn)權(quán)保護合同
- 2024年石材幕墻系統(tǒng)工程承攬協(xié)議樣本版B版
- 2024年環(huán)保設(shè)備銷售與維修合同范本(共3個責任)3篇
- 2024電子競技賽事組織與運營委托合同
- 2024年集裝箱堆場操作合同
- 2024版城市軌道交通建設(shè)服務(wù)合同
- 2024年通信基礎(chǔ)設(shè)施建設(shè)項目投資合作合同3篇
- 2025年度節(jié)日促銷活動廣告物料制作服務(wù)合同2篇
- 2024年精簡版服裝交易協(xié)議范例版
- 2024年職工食堂冷鏈物流承包經(jīng)營合同3篇
- 四川省城市園林綠化施工技術(shù)標準
- 部編版小學一年級上冊道德與法治教學設(shè)計(第三、第四單元)
- HG-T+21527-2014回轉(zhuǎn)拱蓋快開人孔
- 胃腸減壓的護理措施要點課件
- DL5190.5-2019電力建設(shè)施工技術(shù)規(guī)范第5部分:管道及系統(tǒng)
- 科室患者投訴處理管理制度
- JTS-167-2-2009重力式碼頭設(shè)計與施工規(guī)范
- 室內(nèi)設(shè)計專業(yè)建設(shè)發(fā)展規(guī)劃報告
- DL-T 5148-2021水工建筑物水泥灌漿施工技術(shù)條件-PDF解密
- DBJ-T15-81-2022 建筑混凝土結(jié)構(gòu)耐火設(shè)計技術(shù)規(guī)程
- 老年人防跌倒知識講座
評論
0/150
提交評論