版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)(e為自然對數(shù)底數(shù)),若關于x的不等式有且只有一個正整數(shù)解,則實數(shù)m的最大值為()A. B. C. D.2.已知函數(shù)在區(qū)間有三個零點,,,且,若,則的最小正周期為()A. B. C. D.3.在中,角所對的邊分別為,已知,.當變化時,若存在最大值,則正數(shù)的取值范圍為A. B. C. D.4.已知等比數(shù)列滿足,,等差數(shù)列中,為數(shù)列的前項和,則()A.36 B.72 C. D.5.設為自然對數(shù)的底數(shù),函數(shù),若,則()A. B. C. D.6.已知復數(shù),則的虛部為()A.-1 B. C.1 D.7.已知雙曲線的左、右焦點分別為,,P是雙曲線E上的一點,且.若直線與雙曲線E的漸近線交于點M,且M為的中點,則雙曲線E的漸近線方程為()A. B. C. D.8.如圖,點E是正方體ABCD-A1B1C1D1的棱DD1的中點,點F,M分別在線段AC,BD1(不包含端點)上運動,則()A.在點F的運動過程中,存在EF//BC1B.在點M的運動過程中,不存在B1M⊥AEC.四面體EMAC的體積為定值D.四面體FA1C1B的體積不為定值9.設,是雙曲線的左,右焦點,是坐標原點,過點作的一條漸近線的垂線,垂足為.若,則的離心率為()A. B. C. D.10.明代數(shù)學家程大位(1533~1606年),有感于當時籌算方法的不便,用其畢生心血寫出《算法統(tǒng)宗》,可謂集成計算的鼻祖.如圖所示的程序框圖的算法思路源于其著作中的“李白沽酒”問題.執(zhí)行該程序框圖,若輸出的的值為,則輸入的的值為()A. B. C. D.11.設命題函數(shù)在上遞增,命題在中,,下列為真命題的是()A. B. C. D.12.已知是球的球面上兩點,,為該球面上的動點.若三棱錐體積的最大值為36,則球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項和公式為,則數(shù)列的通項公式為___.14.在四棱錐中,是邊長為的正三角形,為矩形,,.若四棱錐的頂點均在球的球面上,則球的表面積為_____.15.在△ABC中,∠BAC=,AD為∠BAC的角平分線,且,若AB=2,則BC=_______.16.若,則____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在本題中,我們把具體如下性質(zhì)的函數(shù)叫做區(qū)間上的閉函數(shù):①的定義域和值域都是;②在上是增函數(shù)或者減函數(shù).(1)若在區(qū)間上是閉函數(shù),求常數(shù)的值;(2)找出所有形如的函數(shù)(都是常數(shù)),使其在區(qū)間上是閉函數(shù).18.(12分)已知函數(shù).(1)當時,解不等式;(2)設不等式的解集為,若,求實數(shù)的取值范圍.19.(12分)如圖,在四棱錐中,底面是邊長為2的菱形,,.(1)證明:平面平面ABCD;(2)設H在AC上,,若,求PH與平面PBC所成角的正弦值.20.(12分)設為實數(shù),已知函數(shù),.(1)當時,求函數(shù)的單調(diào)區(qū)間:(2)設為實數(shù),若不等式對任意的及任意的恒成立,求的取值范圍;(3)若函數(shù)(,)有兩個相異的零點,求的取值范圍.21.(12分)已知函數(shù).(1)解不等式;(2)若函數(shù)存在零點,求的求值范圍.22.(10分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)若,證明.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
若不等式有且只有一個正整數(shù)解,則的圖象在圖象的上方只有一個正整數(shù)值,利用導數(shù)求出的最小值,分別畫出與的圖象,結合圖象可得.【詳解】解:,∴,設,∴,當時,,函數(shù)單調(diào)遞增,當時,,函數(shù)單調(diào)遞減,∴,當時,,當,,函數(shù)恒過點,分別畫出與的圖象,如圖所示,,若不等式有且只有一個正整數(shù)解,則的圖象在圖象的上方只有一個正整數(shù)值,∴且,即,且∴,故實數(shù)m的最大值為,故選:A【點睛】本題考查考查了不等式恒有一正整數(shù)解問題,考查了利用導數(shù)研究函數(shù)的單調(diào)性,考查了數(shù)形結合思想,考查了數(shù)學運算能力.2、C【解析】
根據(jù)題意,知當時,,由對稱軸的性質(zhì)可知和,即可求出,即可求出的最小正周期.【詳解】解:由于在區(qū)間有三個零點,,,當時,,∴由對稱軸可知,滿足,即.同理,滿足,即,∴,,所以最小正周期為:.故選:C.【點睛】本題考查正弦型函數(shù)的最小正周期,涉及函數(shù)的對稱性的應用,考查計算能力.3、C【解析】
因為,,所以根據(jù)正弦定理可得,所以,,所以,其中,,因為存在最大值,所以由,可得,所以,所以,解得,所以正數(shù)的取值范圍為,故選C.4、A【解析】
根據(jù)是與的等比中項,可求得,再利用等差數(shù)列求和公式即可得到.【詳解】等比數(shù)列滿足,,所以,又,所以,由等差數(shù)列的性質(zhì)可得.故選:A【點睛】本題主要考查的是等比數(shù)列的性質(zhì),考查等差數(shù)列的求和公式,考查學生的計算能力,是中檔題.5、D【解析】
利用與的關系,求得的值.【詳解】依題意,所以故選:D【點睛】本小題主要考查函數(shù)值的計算,屬于基礎題.6、A【解析】
分子分母同乘分母的共軛復數(shù)即可.【詳解】,故的虛部為.故選:A.【點睛】本題考查復數(shù)的除法運算,考查學生運算能力,是一道容易題.7、C【解析】
由雙曲線定義得,,OM是的中位線,可得,在中,利用余弦定理即可建立關系,從而得到漸近線的斜率.【詳解】根據(jù)題意,點P一定在左支上.由及,得,,再結合M為的中點,得,又因為OM是的中位線,又,且,從而直線與雙曲線的左支只有一個交點.在中.——①由,得.——②由①②,解得,即,則漸近線方程為.故選:C.【點睛】本題考查求雙曲線漸近線方程,涉及到雙曲線的定義、焦點三角形等知識,是一道中檔題.8、C【解析】
采用逐一驗證法,根據(jù)線線、線面之間的關系以及四面體的體積公式,可得結果.【詳解】A錯誤由平面,//而與平面相交,故可知與平面相交,所以不存在EF//BC1B錯誤,如圖,作由又平面,所以平面又平面,所以由//,所以,平面所以平面,又平面所以,所以存在C正確四面體EMAC的體積為其中為點到平面的距離,由//,平面,平面所以//平面,則點到平面的距離即點到平面的距離,所以為定值,故四面體EMAC的體積為定值錯誤由//,平面,平面所以//平面,則點到平面的距離即為點到平面的距離,所以為定值所以四面體FA1C1B的體積為定值故選:C【點睛】本題考查線面、線線之間的關系,考驗分析能力以及邏輯推理能力,熟練線面垂直與平行的判定定理以及性質(zhì)定理,中檔題.9、B【解析】
設過點作的垂線,其方程為,聯(lián)立方程,求得,,即,由,列出相應方程,求出離心率.【詳解】解:不妨設過點作的垂線,其方程為,由解得,,即,由,所以有,化簡得,所以離心率.故選:B.【點睛】本題主要考查雙曲線的概念、直線與直線的位置關系等基礎知識,考查運算求解、推理論證能力,屬于中檔題.10、C【解析】
根據(jù)程序框圖依次計算得到答案.【詳解】,;,;,;,;,此時不滿足,跳出循環(huán),輸出結果為,由題意,得.故選:【點睛】本題考查了程序框圖的計算,意在考查學生的理解能力和計算能力.11、C【解析】
命題:函數(shù)在上單調(diào)遞減,即可判斷出真假.命題:在中,利用余弦函數(shù)單調(diào)性判斷出真假.【詳解】解:命題:函數(shù),所以,當時,,即函數(shù)在上單調(diào)遞減,因此是假命題.命題:在中,在上單調(diào)遞減,所以,是真命題.則下列命題為真命題的是.故選:C.【點睛】本題考查了函數(shù)的單調(diào)性、正弦定理、三角形邊角大小關系、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎題.12、C【解析】
如圖所示,當點C位于垂直于面的直徑端點時,三棱錐的體積最大,設球的半徑為,此時,故,則球的表面積為,故選C.考點:外接球表面積和椎體的體積.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意,根據(jù)數(shù)列的通項與前n項和之間的關系,即可求得數(shù)列的通項公式.【詳解】由題意,可知當時,;當時,.又因為不滿足,所以.【點睛】本題主要考查了利用數(shù)列的通項與前n項和之間的關系求解數(shù)列的通項公式,其中解答中熟記數(shù)列的通項與前n項和之間的關系,合理準確推導是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.14、【解析】
做中點,的中點,連接,由已知條件可求出,運用余弦定理可求,從而在平面中建立坐標系,則以及的外接圓圓心為和長方形的外接圓圓心為在該平面坐標系的坐標可求,通過球心滿足,即可求出的坐標,從而可求球的半徑,進而能求出球的表面積.【詳解】解:如圖做中點,的中點,連接,由題意知,則設的外接圓圓心為,則在直線上且設長方形的外接圓圓心為,則在上且.設外接球的球心為在中,由余弦定理可知,.在平面中,以為坐標原點,以所在直線為軸,以過點垂直于軸的直線為軸,如圖建立坐標系,由題意知,在平面中且設,則,因為,所以解得.則所以球的表面積為.故答案為:.【點睛】本題考查了幾何體外接球的問題,考查了球的表面積.關于幾何體的外接球的做題思路有:一是通過將幾何體補充到長方體中,將幾何體的外接球等同于長方體的外接球,求出體對角線即為直徑,但這種方法適用性較差;二是通過球的球心與各面外接圓圓心的連線與該平面垂直,設半徑列方程求解;三是通過空間、平面坐標系進行求解.15、【解析】
由,求出長度關系,利用角平分線以及面積關系,求出邊,再由余弦定理,即可求解.【詳解】,,,,.故答案為:.【點睛】本題考查共線向量的應用、面積公式、余弦定理解三角形,考查計算求解能力,屬于中檔題.16、【解析】
由,得出,根據(jù)兩角和與差的正弦公式和余弦公式化簡,再利用齊次式即可求出結果.【詳解】因為,所以,所以.故答案為:.【點睛】本題考查三角函數(shù)化簡求值,利用二倍角正切公式、兩角和與差的正弦公式和余弦公式,以及運用齊次式求值,屬于對公式的考查以及對計算能力的考查.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)依據(jù)新定義,的定義域和值域都是,且在上單調(diào),建立方程求解;(2)依據(jù)新定義,討論的單調(diào)性,列出方程求解即可?!驹斀狻浚?)當時,由復合函數(shù)單調(diào)性知,在區(qū)間上是增函數(shù),即有,解得;同理,當時,有,解得,綜上,。(2)若在上是閉函數(shù),則在上是單調(diào)函數(shù),①當在上是單調(diào)增函數(shù),則,解得,檢驗符合;②當在上是單調(diào)減函數(shù),則,解得,在上不是單調(diào)函數(shù),不符合題意。故滿足在區(qū)間上是閉函數(shù)只有?!军c睛】本題主要考查學生的應用意識,利用所學知識分析解決新定義問題。18、(1)或;(2)【解析】
(1)使用零點分段法,討論分段的取值范圍,然后取它們的并集,可得結果.(2)利用等價轉(zhuǎn)化的思想,可得不等式在恒成立,然后解出解集,根據(jù)集合間的包含關系,可得結果.【詳解】(1)當時,原不等式可化為.①當時,則,所以;②當時,則,所以;⑧當時,則,所以.綜上所述:當時,不等式的解集為或.(2)由,則,由題可知:在恒成立,所以,即,即,所以故所求實數(shù)的取值范圍是.【點睛】本題考查零點分段求解含絕對值不等式,熟練使用分類討論的方法,以及知識的交叉應用,同時掌握等價轉(zhuǎn)化的思想,屬中檔題.19、(1)見解析;(2)【解析】
(1)記,連結,推導出,平面,由此能證明平面平面;(2)推導出,平面,連結,由題意得為的重心,,從而平面平面,進而是與平面所成角,由此能求出與平面所成角的正弦值.【詳解】(1)證明:記,連結,中,,,,,,平面,平面,平面平面.(2)中,,,,,,,,,,平面,∴,連結,由題意得為的重心,,,,平面平面平面,∴在平面的射影落在上,是與平面所成角,中,,,,.與平面所成角的正弦值為.【點睛】本題考查面面垂直的證明,考查線面角的正弦值的求法,考查線線、線面、面面的位置關系等基礎知識,考查運算求解能力,是中檔題.20、(1)函數(shù)單調(diào)減區(qū)間為;單調(diào)增區(qū)間為.(2)(3)【解析】
(1)據(jù)導數(shù)和函數(shù)單調(diào)性的關系即可求出;(2)分離參數(shù),可得對任意的及任意的恒成立,構造函數(shù),利用導數(shù)求出函數(shù)的最值即可求出的范圍;(3)先求導,再分類討論,根據(jù)導數(shù)和函數(shù)單調(diào)性以及最值得關系即可求出的范圍【詳解】解:(1)當時,因為,當時,;當時,.所以函數(shù)單調(diào)減區(qū)間為;單調(diào)增區(qū)間為.(2)由,得,由于,所以對任意的及任意的恒成立,由于,所以,所以對任意的恒成立,設,,則,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以,所以.(3)由,得,其中.①若時,則,所以函數(shù)在上單調(diào)遞增,所以函數(shù)至多有一個零點,不合題意;②若時,令,得.由第(2)小題,知:當時,,所以,所以,所以當時,函數(shù)的值域為.所以,存在,使得,即,①且當時,,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.因為函數(shù)有兩個零點,,所以.②設,,則,所以函數(shù)在單調(diào)遞增,由于,所以當時,.所以,②式中的,又由①式,得.由第(1)小題可知,當時,函數(shù)在上單調(diào)遞減,所以,即.當時,(ⅰ)由于,所以得,又因為,且函數(shù)在上單調(diào)遞減,函數(shù)的圖象在上不間斷,所以函數(shù)在上恰有一個零點;(ⅱ)由于,令,設,,由于時,,,所以設,即.由①式,得,當時,,且,同理可得函數(shù)在上也恰有一個零點.綜上,.【點睛】本題考查含參數(shù)的導數(shù)的單調(diào)性,利用導數(shù)求不等式恒成
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國鹽酸阿夫唑嗪市場調(diào)查研究報告
- 2025年過濾式自救呼吸器項目可行性研究報告
- 二零二五年度跨境電商進出口貿(mào)易合同3篇
- 2025年立式感應水龍頭項目可行性研究報告
- 2025年電子捕鼠器項目可行性研究報告
- 2025年煙罩項目可行性研究報告
- 2025年潤滑銅套項目可行性研究報告
- 2025年復式防火卷簾門項目可行性研究報告
- 2025年不銹鋼標示牌項目可行性研究報告
- 2025至2030年有機葵花籽項目投資價值分析報告
- cpk自動計算電子表格表格
- 2024-2025學年湖北省武漢市部分重點中學高一上學期期末聯(lián)考數(shù)學試卷(含答案)
- 2025年浙江省交通投資集團財務共享服務中心招聘2名高頻重點提升(共500題)附帶答案詳解
- 做投標文件培訓
- 9.4+跨學科實踐:制作簡易活塞式抽水機課件+-2024-2025學年人教版物理八年級下冊
- 建筑工程工作計劃
- 2025年中國國際投資促進中心限責任公司招聘管理單位筆試遴選500模擬題附帶答案詳解
- 瓶裝液化氣送氣工培訓
- 外科護理課程思政課程標準
- 船舶航行安全
- 9.2溶解度(第1課時飽和溶液不飽和溶液)+教學設計-2024-2025學年九年級化學人教版(2024)下冊
評論
0/150
提交評論