版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分別以點A,B為圓心,大于線段AB長度的一半為半徑作弧,相交于點E,F,過點E,F作直線EF,交AB于點D,連接CD,則△ACD的周長為()A.13 B.17 C.18 D.252.如圖,在ABCD中,E為CD上一點,連接AE、BD,且AE、BD交于點F,DE:EC=2:3,則S△DEF:S△ABF=()A.2:3 B.4:9 C.2:5 D.4:253.如圖,已知E,B,F,C四點在一條直線上,,,添加以下條件之一,仍不能證明≌的是A. B. C. D.4.-2的絕對值是()A.2 B.-2 C.±2 D.5.化簡(﹣a2)?a5所得的結果是()A.a7 B.﹣a7 C.a10 D.﹣a106.將一把直尺和一塊含30°和60°角的三角板ABC按如圖所示的位置放置,如果∠CDE=40°,那么∠BAF的大小為()A.10° B.15° C.20° D.25°7.如圖,Rt△ABC中,∠C=90°,∠A=35°,點D在邊BC上,BD=2CD.把△ABC繞著點D逆時針旋轉m(0<m<180)度后,如果點B恰好落在初始Rt△ABC的邊上,那么m=()A.35° B.60° C.70° D.70°或120°8.在下面四個幾何體中,從左面看、從上面看分別得到的平面圖形是長方形、圓,這個幾何體是()A. B. C. D.9.如圖,在△ABC中,AB=AC=10,CB=16,分別以AB、AC為直徑作半圓,則圖中陰影部分面積是()A.50π﹣48 B.25π﹣48 C.50π﹣24 D.10.拋物線y=x2+2x+3的對稱軸是()A.直線x=1 B.直線x=-1C.直線x=-2 D.直線x=2二、填空題(本大題共6個小題,每小題3分,共18分)11.算術平方根等于本身的實數是__________.12.如圖,在平面直角坐標系中,一動點從原點O出發(fā),沿著箭頭所示方向,每次移動一個單位,依次得到點P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,則點P2019的坐標是_____.13.一組“數值轉換機”按下面的程序計算,如果輸入的數是36,則輸出的結果為106,要使輸出的結果為127,則輸入的最小正整數是__________.14.在函數中,自變量x的取值范圍是_________.15.如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,點D是邊AB上的動點,將△ACD沿CD所在的直線折疊至△CDA的位置,CA'交AB于點E.若△A'ED為直角三角形,則AD的長為_____.16.如圖,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,若∠C=20°,則∠CDA=°.三、解答題(共8題,共72分)17.(8分)關于x的一元二次方程x2+(m-1)x-(2m+3)=1.(1)求證:方程總有兩個不相等的實數根;(2)寫出一個m的值,并求出此時方程的根.18.(8分)如圖,反比例函數y=(x>0)的圖象與一次函數y=2x的圖象相交于點A,其橫坐標為1.(1)求k的值;(1)點B為此反比例函數圖象上一點,其縱坐標為2.過點B作CB∥OA,交x軸于點C,求點C的坐標.19.(8分)在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示的正整數后,背面向上,洗勻放好.(1)我們知道,滿足a2+b2=c2的三個正整數a,b,c成為勾股數,嘉嘉從中隨機抽取一張,求抽到的卡片上的數是勾股數的概率P1;(2)琪琪從中隨機抽取一張(不放回),再從剩下的卡片中隨機抽取一張(卡片用A,B,C,D表示).請用列表或畫樹形圖的方法求抽到的兩張卡片上的數都是勾股數的概率P2,并指出她與嘉嘉抽到勾股數的可能性一樣嗎?20.(8分)如圖,拋物線y=﹣x2+bx+c(a≠0)與x軸交于點A(﹣1,0)和B(3,0),與y軸交于點C,點D的橫坐標為m(0<m<3),連結DC并延長至E,使得CE=CD,連結BE,BC.(1)求拋物線的解析式;(2)用含m的代數式表示點E的坐標,并求出點E縱坐標的范圍;(3)求△BCE的面積最大值.21.(8分)如圖1,在△ABC中,點P為邊AB所在直線上一點,連結CP,M為線段CP的中點,若滿足∠ACP=∠MBA,則稱點P為△ABC的“好點”.(1)如圖2,當∠ABC=90°時,命題“線段AB上不存在“好點”為(填“真”或“假”)命題,并說明理由;(2)如圖3,P是△ABC的BA延長線的一個“好點”,若PC=4,PB=5,求AP的值;(3)如圖4,在Rt△ABC中,∠CAB=90°,點P是△ABC的“好點”,若AC=4,AB=5,求AP的值.22.(10分)美麗的黃河宛如一條玉帶穿城而過,沿河兩岸的濱河路風情線是蘭州最美的景觀之一.數學課外實踐活動中,小林在南濱河路上的A,B兩點處,利用測角儀分別對北岸的一觀景亭D進行了測量.如圖,測得∠DAC=45°,∠DBC=65°.若AB=132米,求觀景亭D到南濱河路AC的距離約為多少米?(結果精確到1米,參考數據:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)23.(12分)已知:如圖,AB為⊙O的直徑,AB=AC,BC交⊙O于點D,DE⊥AC于E.(1)求證:DE為⊙O的切線;(2)G是ED上一點,連接BE交圓于F,連接AF并延長交ED于G.若GE=2,AF=3,求EF的長.24.如圖,AB為⊙O的直徑,點C在⊙O上,AD⊥CD于點D,且AC平分∠DAB,求證:(1)直線DC是⊙O的切線;(2)AC2=2AD?AO.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】在Rt△ABC中,∠ACB=90°,BC=12,AC=5,根據勾股定理求得AB=13.根據題意可知,EF為線段AB的垂直平分線,在Rt△ABC中,根據直角三角形斜邊的中線等于斜邊的一半可得CD=AD=AB,所以△ACD的周長為AC+CD+AD=AC+AB=5+13=18.故選C.2、D【解析】試題分析:先根據平行四邊形的性質及相似三角形的判定定理得出△DEF∽△BAF,從而DE:AB=DE:DC=2:5,所以S△DEF:S△ABF=4:25試題解析:∵四邊形ABCD是平行四邊形,∴AB∥CD,BA=DC∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∴DE:AB=DE:DC=2:5,∴S△DEF:S△ABF=4:25,考點:1.相似三角形的判定與性質;2.三角形的面積;3.平行四邊形的性質.3、B【解析】
由EB=CF,可得出EF=BC,又有∠A=∠D,本題具備了一組邊、一組角對應相等,為了再添一個條件仍不能證明△ABC≌△DEF,那么添加的條件與原來的條件可形成SSA,就不能證明△ABC≌△DEF了.【詳解】添加,根據AAS能證明≌,故A選項不符合題意.B.添加與原條件滿足SSA,不能證明≌,故B選項符合題意;C.添加,可得,根據AAS能證明≌,故C選項不符合題意;D.添加,可得,根據AAS能證明≌,故D選項不符合題意,故選B.【點睛】本題考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.4、A【解析】
根據絕對值的性質進行解答即可【詳解】解:﹣1的絕對值是:1.故選:A.【點睛】此題考查絕對值,難度不大5、B【解析】分析:根據同底數冪的乘法計算即可,計算時注意確定符號.詳解:(-a2)·a5=-a7.故選B.點睛:本題考查了同底數冪的乘法,熟練掌握同底數的冪相乘,底數不變,指數相加是解答本題的關鍵.6、A【解析】
先根據∠CDE=40°,得出∠CED=50°,再根據DE∥AF,即可得到∠CAF=50°,最后根據∠BAC=60°,即可得出∠BAF的大小.【詳解】由圖可得,∠CDE=40°,∠C=90°,∴∠CED=50°,又∵DE∥AF,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°?50°=10°,故選A.【點睛】本題考查了平行線的性質,熟練掌握這一點是解題的關鍵.7、D【解析】
①當點B落在AB邊上時,根據DB=DB1,即可解決問題,②當點B落在AC上時,在RT△DCB2中,根據∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解決問題.【詳解】①當點B落在AB邊上時,∵DB=DB∴∠B=∠DB∴m=∠BDB②當點B落在AC上時,在RT△DCB∵∠C=90°,DB∴∠CB∴m=∠C+∠CB故選D.【點睛】本題考查的知識點是旋轉的性質,解題關鍵是考慮多種情況,進行分類討論.8、A【解析】試題分析:由題意可知:從左面看得到的平面圖形是長方形是柱體,從上面看得到的平面圖形是圓的是圓柱或圓錐,綜合得出這個幾何體為圓柱,由此選擇答案即可.解:從左面看得到的平面圖形是長方形是柱體,符合條件的有A、C、D,從上面看得到的平面圖形是圓的是圓柱或圓錐,符合條件的有A、B,綜上所知這個幾何體是圓柱.故選A.考點:由三視圖判斷幾何體.9、B【解析】
設以AB、AC為直徑作半圓交BC于D點,連AD,如圖,∴AD⊥BC,∴BD=DC=BC=8,而AB=AC=10,CB=16,∴AD===6,∴陰影部分面積=半圓AC的面積+半圓AB的面積﹣△ABC的面積,=π?52﹣?16?6,=25π﹣1.故選B.10、B【解析】
根據拋物線的對稱軸公式:計算即可.【詳解】解:拋物線y=x2+2x+3的對稱軸是直線故選B.【點睛】此題考查的是求拋物線的對稱軸,掌握拋物線的對稱軸公式是解決此題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、0或1【解析】根據負數沒有算術平方根,一個正數的算術平方根只有一個,1和0的算術平方根等于本身,即可得出答案.解:1和0的算術平方根等于本身.故答案為1和0“點睛”本題考查了算術平方根的知識,注意掌握1和0的算術平方根等于本身.12、(673,0)【解析】
由P3、P6、P9可得規(guī)律:當下標為3的整數倍時,橫坐標為,縱坐標為0,據此可解.【詳解】解:由P3、P6、P9可得規(guī)律:當下標為3的整數倍時,橫坐標為,縱坐標為0,∵2019÷3=673,∴P2019(673,0)則點P2019的坐標是(673,0).故答案為(673,0).【點睛】本題屬于平面直角坐標系中找點的規(guī)律問題,找到某種循環(huán)規(guī)律之后,可以得解.本題難度中等偏上.13、15【解析】
分析:設輸出結果為y,觀察圖形我們可以得出x和y的關系式為:,將y的值代入即可求得x的值.詳解:∵當y=127時,解得:x=43;當y=43時,解得:x=15;當y=15時,解得不符合條件.則輸入的最小正整數是15.故答案為15.點睛:考查一元一次方程的應用,熟練掌握一元一次方程的應用是解題的關鍵.14、x≤1且x≠﹣1【解析】試題分析:根據二次根式有意義,分式有意義得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.故答案為x≤1且x≠﹣1.考點:函數自變量的取值范圍;分式有意義的條件;二次根式有意義的條件.15、3﹣或1【解析】
分兩種情況:情況一:如圖一所示,當∠A'DE=90°時;情況二:如圖二所示,當∠A'ED=90°時.【詳解】解:如圖,當∠A'DE=90°時,△A'ED為直角三角形,∵∠A'=∠A=30°,∴∠A'ED=60°=∠BEC=∠B,∴△BEC是等邊三角形,∴BE=BC=1,又∵Rt△ABC中,AB=1BC=4,∴AE=1,設AD=A'D=x,則DE=1﹣x,∵Rt△A'DE中,A'D=DE,∴x=(1﹣x),解得x=3﹣,即AD的長為3﹣;如圖,當∠A'ED=90°時,△A'ED為直角三角形,此時∠BEC=90°,∠B=60°,∴∠BCE=30°,∴BE=BC=1,又∵Rt△ABC中,AB=1BC=4,∴AE=4﹣1=3,∴DE=3﹣x,設AD=A'D=x,則Rt△A'DE中,A'D=1DE,即x=1(3﹣x),解得x=1,即AD的長為1;綜上所述,即AD的長為3﹣或1.故答案為3﹣或1.【點睛】本題考查了翻折變換,勾股定理,等腰直角三角形的判定和性質等知識,添加輔助線,構造直角三角形,學會運用分類討論是解題的關鍵.16、1.【解析】
連接OD,根據圓的切線定理和等腰三角形的性質可得出答案.【詳解】連接OD,則∠ODC=90°,∠COD=70°,∵OA=OD,∴∠ODA=∠A=∠COD=35°,∴∠CDA=∠CDO+∠ODA=90°+35°=1°,故答案為1.考點:切線的性質.三、解答題(共8題,共72分)17、(1)見解析;(2)x1=1,x2=2【解析】
(1)根據根的判別式列出關于m的不等式,求解可得;(2)取m=-2,代入原方程,然后解方程即可.【詳解】解:(1)根據題意,△=(m-1)2-4[-(2m+2)]=m2+6m+12=(m+2)2+4,∵(m+2)2+4>1,∴方程總有兩個不相等的實數根;(2)當m=-2時,由原方程得:x2-4x+2=1.整理,得(x-1)(x-2)=1,解得x1=1,x2=2.【點睛】本題主要考查根的判別式與韋達定理,一元二次方程ax2+bx+c=1(a≠1)的根與△=b2-4ac有如下關系:①當△>1時,方程有兩個不相等的兩個實數根;②當△=1時,方程有兩個相等的兩個實數根;③當△<1時,方程無實數根.18、(1)k=11;(1)C(2,0).【解析】試題分析:(1)首先求出點A的坐標為(1,6),把點A(1,6)代入y=即可求出k的值;
(1)求出點B的坐標為B(4,2),設直線BC的解析式為y=2x+b,把點B(4,2)代入求出b=-9,得出直線BC的解析式為y=2x-9,求出當y=0時,x=2即可.試題解析:(1)∵點A在直線y=2x上,其橫坐標為1.∴y=2×1=6,∴A(1,6),把點A(1,6)代入,得,解得:k=11;(1)由(1)得:,∵點B為此反比例函數圖象上一點,其縱坐標為2,∴,解得x=
4,∴B(4,2),∵CB∥OA,∴設直線BC的解析式為y=2x+b,把點B(4,2)代入y=2x+b,得2×4+b=2,解得:b=﹣9,∴直線BC的解析式為y=2x﹣9,當y=0時,2x﹣9=0,解得:x=2,∴C(2,0).19、(1);(2)淇淇與嘉嘉抽到勾股數的可能性不一樣.【解析】試題分析:(1)根據等可能事件的概率的定義,分別確定總的可能性和是勾股數的情況的個數;(2)用列表法列舉出所有的情況和兩張卡片上的數都是勾股數的情況即可.試題解析:(1)嘉嘉隨機抽取一張卡片共出現4種等可能結果,其中抽到的卡片上的數是勾股數的結果有3種,所以嘉嘉抽取一張卡片上的數是勾股數的概率P1=;(2)列表法:ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)由列表可知,兩次抽取卡片的所有可能出現的結果有12種,其中抽到的兩張卡片上的數都是勾股數的有6種,∴P2=,∵P1=,P2=,P1≠P2∴淇淇與嘉嘉抽到勾股數的可能性不一樣.20、(1)y=﹣x2+2x+1.(2)2≤Ey<2.(1)當m=1.5時,S△BCE有最大值,S△BCE的最大值=.【解析】分析:(1)1)把A、B兩點代入拋物線解析式即可;(2)設,利用求線段中點的公式列出關于m的方程組,再利用0<m<1即可求解;(1)連結BD,過點D作x軸的垂線交BC于點H,由,設出點D的坐標,進而求出點H的坐標,利用三角形的面積公式求出,再利用公式求二次函數的最值即可.詳解:(1)∵拋物線過點A(1,0)和B(1,0)(2)∵∴點C為線段DE中點設點E(a,b)∵0<m<1,∴當m=1時,縱坐標最小值為2當m=1時,最大值為2∴點E縱坐標的范圍為(1)連結BD,過點D作x軸的垂線交BC于點H∵CE=CD∴H(m,-m+1)∴當m=1.5時,.點睛:本題考查了二次函數的綜合題、待定系數法、一次函數等知識點,解題的關鍵是靈活運用所學知識解決問題,會用方程的思想解決問題.21、(1)真;(2);(3)或或.【解析】
(1)先根據直角三角形斜邊的中線等于斜邊的一半可知MP=MB,從而∠MPB=∠MBP,然后根據三角形外角的性質說明即可;(2)先證明△PAC∽△PMB,然后根據相似三角形的性質求解即可;(3)分三種情況求解:P為線段AB上的“好點”,P為線段AB延長線上的“好點”,P為線段BA延長線上的“好點”.【詳解】(1)真.理由如下:如圖,當∠ABC=90°時,M為PC中點,BM=PM,則∠MPB=∠MBP>∠ACP,所以在線段AB上不存在“好點”;(2)∵P為BA延長線上一個“好點”;∴∠ACP=∠MBP;∴△PAC∽△PMB;∴即;∵M為PC中點,∴MP=2;∴;∴.(3)第一種情況,P為線段AB上的“好點”,則∠ACP=∠MBA,找AP中點D,連結MD;∵M為CP中點;∴MD為△CPA中位線;∴MD=2,MD//CA;∴∠DMP=∠ACP=∠MBA;∴△DMP∽△DBM;∴DM2=DP·DB即4=DP·(5DP);解得DP=1,DP=4(不在AB邊上,舍去;)∴AP=2第二種情況(1),P為線段AB延長線上的“好點”,則∠ACP=∠MBA,找AP中點D,此時,D在線段AB上,如圖,連結MD;∵M為CP中點;∴MD為△CPA中位線;∴MD=2,MD//CA;∴∠DMP=∠ACP=∠MBA;∴△DMP∽△DBM∴DM2=DP·DB即4=DP·(5DA)=DP·(5DP);解得DP=1(不在AB延長線上,舍去),DP=4∴AP=8;第二種情況(2),P為線段AB延長線上的“好點”,找AP中點D,此時,D在AB延長線上,如圖,連結MD;此時,∠MBA>∠MDB>∠DMP=∠ACP,則這種情況不存在,舍去;第三種情況,P為線段BA延長線上的“好點”,則∠ACP=∠MBA,∴△PAC∽△PMB;∴∴BM垂直平分PC則BC=BP=;∴∴綜上所述,或或;【點睛】本題考查了信息遷移,三角形外角的性質,直角三角形斜邊的中線等于斜邊的一半,相似三角形的判定與性質及分類討論的數學思想,理解“好點”的定義并能進行分類討論是解答本題的關鍵.22、觀景亭D到南濱河路AC的距離約為248米.【解析】
過點D作DE⊥AC,垂足為E,設BE=x,根據AE=DE,列出方程即可解決問題.【詳解】過點D作DE⊥AC,垂足為E,設BE=x,在Rt△DEB中,tan∠DBE=,∵∠DBC=65°,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE.∴132+x=xtan65°,∴解得x≈115.8,∴DE≈2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 船舶制造廠改造力工合同
- 慶典活動盆景租賃協議
- 鋁單板施工協議科技園區(qū)外墻裝修
- 停車場澆筑施工合同
- 娛樂場所廣告牌安裝施工合同
- 環(huán)境保護挖機租賃協議
- 文化門市租賃協議
- 石油公司租賃協議
- 2024年雙邊科研合作協議
- 2024年廣告代理權協議:公司與合作方
- 湖北省十堰市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細
- (新版)重癥專科護士考試題庫(含答案)
- 個人收入證明免費打印
- 部編人教版八年級上冊語文期末復習課件(專題三 名著閱讀)
- 商務部績效考核表
- 《對校園欺凌說“不”》教學課件-《心理健康教育》七年級下冊
- 無犯罪記錄證明書申請表模板(通用)
- 鋼結構可行性分析報告
- 高中地理 選必一《自然環(huán)境的整體性》第二課時-教學設計
- 《紀念白求恩》朱德《紀念白求恩同志》教科書原文版
- GB∕T 8163-2018 輸送流體用無縫鋼管
評論
0/150
提交評論