廣東省高要市重點中學(xué)2022-2023學(xué)年中考數(shù)學(xué)模擬試題含解析_第1頁
廣東省高要市重點中學(xué)2022-2023學(xué)年中考數(shù)學(xué)模擬試題含解析_第2頁
廣東省高要市重點中學(xué)2022-2023學(xué)年中考數(shù)學(xué)模擬試題含解析_第3頁
廣東省高要市重點中學(xué)2022-2023學(xué)年中考數(shù)學(xué)模擬試題含解析_第4頁
廣東省高要市重點中學(xué)2022-2023學(xué)年中考數(shù)學(xué)模擬試題含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.函數(shù)y=ax+b與y=bx+a的圖象在同一坐標(biāo)系內(nèi)的大致位置是()A. B.C. D.2.甲、乙兩車從A地出發(fā),勻速駛向B地.甲車以80km/h的速度行駛1h后,乙車才沿相同路線行駛.乙車先到達(dá)B地并停留1h后,再以原速按原路返回,直至與甲車相遇.在此過程中,兩車之間的距離y(km)與乙車行駛時間x(h)之間的函數(shù)關(guān)系如圖所示.下列說法:①乙車的速度是120km/h;②m=160;③點H的坐標(biāo)是(7,80);④n=7.1.其中說法正確的有()A.4個 B.3個 C.2個 D.1個3.如圖,菱形ABCD的邊長為2,∠B=30°.動點P從點B出發(fā),沿B-C-D的路線向點D運動.設(shè)△ABP的面積為y(B、P兩點重合時,△ABP的面積可以看作0),點P運動的路程為x,則y與x之間函數(shù)關(guān)系的圖像大致為()A. B. C. D.4.長度單位1納米=10A.25.1×10-6米B.C.2.51×105米D.5.去年二月份,某房地產(chǎn)商將房價提高40%,在中央“房子是用來住的,不是用來炒的”指示下達(dá)后,立即降價30%.設(shè)降價后房價為x,則去年二月份之前房價為()A.(1+40%)×30%x B.(1+40%)(1﹣30%)xC. D.6.下列計算正確的是()A.+= B.﹣= C.×=6 D.=47.如圖,在△ABC中,點D、E分別在邊AB、AC的反向延長線上,下面比例式中,不能判定ED//BC的是()A. B.C. D.8.如圖,在正方形ABCD中,E為AB的中點,G,F(xiàn)分別為AD、BC邊上的點,若AG=1,BF=2,∠GEF=90°,則GF的長為()A.2 B.3 C.4 D.59.安徽省2010年末森林面積為3804.2千公頃,用科學(xué)記數(shù)法表示3804.2千正確的是()A.3804.2×103 B.380.42×104 C.3.8042×106 D.3.8042×10510.在平面直角坐標(biāo)系中,將點P(﹣4,2)繞原點O順時針旋轉(zhuǎn)90°,則其對應(yīng)點Q的坐標(biāo)為()A.(2,4) B.(2,﹣4) C.(﹣2,4) D.(﹣2,﹣4)二、填空題(本大題共6個小題,每小題3分,共18分)11.如果點A(-1,4)、B(m,4)在拋物線y=a(x-1)2+h上,那么m的值為_____.12.某校廣播臺要招聘一批小主持人,對A、B兩名小主持人進(jìn)行了專業(yè)素質(zhì)、創(chuàng)新能力、外語水平和應(yīng)變能力進(jìn)行了測試,他們各項的成績(百分制)如表所示:應(yīng)聘者專業(yè)素質(zhì)創(chuàng)新能力外語水平應(yīng)變能力A73857885B81828075如果只招一名主持人,該選用______;依據(jù)是_____.(答案不唯一,理由支撐選項即可)13.已知AB=AC,tanA=2,BC=5,則△ABC的面積為_______________.14.哈爾濱市某樓盤以每平方米10000元的均價對外銷售,經(jīng)過連續(xù)兩次上調(diào)后,均價為每平方米12100元,則平均每次上調(diào)的百分率為_____.15.因式分解=______.16.當(dāng)a=3時,代數(shù)式的值是______.三、解答題(共8題,共72分)17.(8分)如圖,AB是⊙O的直徑,點C在⊙O上,CE^AB于E,CD平分DECB,交過點B的射線于D,交AB于F,且BC=BD.(1)求證:BD是⊙O的切線;(2)若AE=9,CE=12,求BF的長.18.(8分)計算:(﹣2)0++4cos30°﹣|﹣|.19.(8分)如圖所示,內(nèi)接于圓O,于D;(1)如圖1,當(dāng)AB為直徑,求證:;(2)如圖2,當(dāng)AB為非直徑的弦,連接OB,則(1)的結(jié)論是否成立?若成立請證明,不成立說明由;(3)如圖3,在(2)的條件下,作于E,交CD于點F,連接ED,且,若,,求CF的長度.20.(8分)如圖,拋物線y=x2﹣2mx(m>0)與x軸的另一個交點為A,過P(1,﹣m)作PM⊥x軸于點M,交拋物線于點B,點B關(guān)于拋物線對稱軸的對稱點為C(1)若m=2,求點A和點C的坐標(biāo);(2)令m>1,連接CA,若△ACP為直角三角形,求m的值;(3)在坐標(biāo)軸上是否存在點E,使得△PEC是以P為直角頂點的等腰直角三角形?若存在,求出點E的坐標(biāo);若不存在,請說明理由.21.(8分)有大小兩種貨車,3輛大貨車與4輛小貨車一次可以運貨18噸,2輛大貨車與6輛小貨車一次可以運貨17噸.請問1輛大貨車和1輛小貨車一次可以分別運貨多少噸?目前有33噸貨物需要運輸,貨運公司擬安排大小貨車共計10輛,全部貨物一次運完,其中每輛大貨車一次運費花費130元,每輛小貨車一次運貨花費100元,請問貨運公司應(yīng)如何安排車輛最節(jié)省費用?22.(10分)如圖,點D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求證:AB=EF.23.(12分)如圖,已知直線AB經(jīng)過點(0,4),與拋物線y=x2交于A,B兩點,其中點A的橫坐標(biāo)是.求這條直線的函數(shù)關(guān)系式及點B的坐標(biāo).在x軸上是否存在點C,使得△ABC是直角三角形?若存在,求出點C的坐標(biāo),若不存在請說明理由.過線段AB上一點P,作PM∥x軸,交拋物線于點M,點M在第一象限,點N(0,1),當(dāng)點M的橫坐標(biāo)為何值時,MN+3MP的長度最大?最大值是多少?24.圖1和圖2中,優(yōu)弧紙片所在⊙O的半徑為2,AB=2,點P為優(yōu)弧上一點(點P不與A,B重合),將圖形沿BP折疊,得到點A的對稱點A′.發(fā)現(xiàn):(1)點O到弦AB的距離是,當(dāng)BP經(jīng)過點O時,∠ABA′=;(2)當(dāng)BA′與⊙O相切時,如圖2,求折痕的長.拓展:把上圖中的優(yōu)弧紙片沿直徑MN剪裁,得到半圓形紙片,點P(不與點M,N重合)為半圓上一點,將圓形沿NP折疊,分別得到點M,O的對稱點A′,O′,設(shè)∠MNP=α.(1)當(dāng)α=15°時,過點A′作A′C∥MN,如圖3,判斷A′C與半圓O的位置關(guān)系,并說明理由;(2)如圖4,當(dāng)α=°時,NA′與半圓O相切,當(dāng)α=°時,點O′落在上.(3)當(dāng)線段NO′與半圓O只有一個公共點N時,直接寫出β的取值范圍.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

根據(jù)a、b的符號進(jìn)行判斷,兩函數(shù)圖象能共存于同一坐標(biāo)系的即為正確答案.【詳解】分四種情況:①當(dāng)a>0,b>0時,y=ax+b的圖象經(jīng)過第一、二、三象限,y=bx+a的圖象經(jīng)過第一、二、三象限,無選項符合;②當(dāng)a>0,b<0時,y=ax+b的圖象經(jīng)過第一、三、四象限;y=bx+a的圖象經(jīng)過第一、二、四象限,B選項符合;③當(dāng)a<0,b>0時,y=ax+b的圖象經(jīng)過第一、二、四象限;y=bx+a的圖象經(jīng)過第一、三、四象限,B選項符合;④當(dāng)a<0,b<0時,y=ax+b的圖象經(jīng)過第二、三、四象限;y=bx+a的圖象經(jīng)過第二、三、四象限,無選項符合.故選B.【點睛】此題考查一次函數(shù)的圖象,關(guān)鍵是根據(jù)一次函數(shù)y=kx+b的圖象有四種情況:①當(dāng)k>0,b>0,函數(shù)y=kx+b的圖象經(jīng)過第一、二、三象限;②當(dāng)k>0,b<0,函數(shù)y=kx+b的圖象經(jīng)過第一、三、四象限;③當(dāng)k<0,b>0時,函數(shù)y=kx+b的圖象經(jīng)過第一、二、四象限;④當(dāng)k<0,b<0時,函數(shù)y=kx+b的圖象經(jīng)過第二、三、四象限.2、B【解析】

根據(jù)題意,兩車距離為函數(shù),由圖象可知兩車起始距離為80,從而得到乙車速度,根據(jù)圖象變化規(guī)律和兩車運動狀態(tài),得到相關(guān)未知量.【詳解】由圖象可知,乙出發(fā)時,甲乙相距80km,2小時后,乙車追上甲.則說明乙每小時比甲快40km,則乙的速度為120km/h.①正確;由圖象第2﹣6小時,乙由相遇點到達(dá)B,用時4小時,每小時比甲快40km,則此時甲乙距離4×40=160km,則m=160,②正確;當(dāng)乙在B休息1h時,甲前進(jìn)80km,則H點坐標(biāo)為(7,80),③正確;乙返回時,甲乙相距80km,到兩車相遇用時80÷(120+80)=0.4小時,則n=6+1+0.4=7.4,④錯誤.故選B.【點睛】本題以函數(shù)圖象為背景,考查雙動點條件下,兩點距離與運動時間的函數(shù)關(guān)系,解答時既要注意圖象變化趨勢,又要關(guān)注動點的運動狀態(tài).3、C【解析】

先分別求出點P從點B出發(fā),沿B→C→D向終點D勻速運動時,當(dāng)0<x≤2和2<x≤4時,y與x之間的函數(shù)關(guān)系式,即可得出函數(shù)的圖象.【詳解】由題意知,點P從點B出發(fā),沿B→C→D向終點D勻速運動,則

當(dāng)0<x≤2,y=x,

當(dāng)2<x≤4,y=1,

由以上分析可知,這個分段函數(shù)的圖象是C.

故選C.4、D【解析】先將25100用科學(xué)記數(shù)法表示為2.51×104,再和10-9相乘,等于2.51×10-5米.故選D5、D【解析】

根據(jù)題意可以用相應(yīng)的代數(shù)式表示出去年二月份之前房價,本題得以解決.【詳解】由題意可得,去年二月份之前房價為:x÷(1﹣30%)÷(1+40%)=,故選:D.【點睛】本題考查了列代數(shù)式,解答本題的關(guān)鍵是明確題意,列出相應(yīng)的代數(shù)式.6、B【解析】

根據(jù)同類二次根式才能合并可對A進(jìn)行判斷;根據(jù)二次根式的乘法對B進(jìn)行判斷;先把化為最簡二次根式,然后進(jìn)行合并,即可對C進(jìn)行判斷;根據(jù)二次根式的除法對D進(jìn)行判斷.【詳解】解:A、與不能合并,所以A選項不正確;B、-=2?=,所以B選項正確;C、×=,所以C選項不正確;D、=÷=2÷=2,所以D選項不正確.故選B.【點睛】此題考查二次根式的混合運算,注意先化簡,再進(jìn)一步利用計算公式和計算方法計算.7、C【解析】

根據(jù)平行線分線段成比例定理推理的逆定理,對各選項進(jìn)行逐一判斷即可.【詳解】A.當(dāng)時,能判斷;B.

當(dāng)時,能判斷;C.

當(dāng)時,不能判斷;D.

當(dāng)時,,能判斷.故選:C.【點睛】本題考查平行線分線段成比例定理推理的逆定理,根據(jù)定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊.能根據(jù)定理判斷線段是否為對應(yīng)線段是解決此題的關(guān)鍵.8、B【解析】∵四邊形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴,又∵AE=BE,∴AE2=AG?BF=2,∴AE=(舍負(fù)),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的長為3,故選B.【點睛】本題考查了相似三角形的性質(zhì)的應(yīng)用,利用勾股定理即可得解,解題的關(guān)鍵是證明△AEG∽△BFE.9、C【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.【詳解】∵3804.2千=3804200,∴3804200=3.8042×106;故選:C.【點睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.10、A【解析】

首先求出∠MPO=∠QON,利用AAS證明△PMO≌△ONQ,即可得到PM=ON,OM=QN,進(jìn)而求出Q點坐標(biāo).【詳解】作圖如下,∵∠MPO+∠POM=90°,∠QON+∠POM=90°,∴∠MPO=∠QON,在△PMO和△ONQ中,∵,∴△PMO≌△ONQ,∴PM=ON,OM=QN,∵P點坐標(biāo)為(﹣4,2),∴Q點坐標(biāo)為(2,4),故選A.【點睛】此題主要考查了旋轉(zhuǎn)的性質(zhì),以及全等三角形的判定和性質(zhì),關(guān)鍵是掌握旋轉(zhuǎn)后對應(yīng)線段相等.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】

根據(jù)函數(shù)值相等兩點關(guān)于對稱軸對稱,可得答案.【詳解】由點A(﹣1,4)、B(m,4)在拋物線y=a(x﹣1)2+h上,得:(﹣1,4)與(m,4)關(guān)于對稱軸x=1對稱,m﹣1=1﹣(﹣1),解得:m=1.故答案為:1.【點睛】本題考查了二次函數(shù)圖象上點的坐標(biāo)特征,利用函數(shù)值相等兩點關(guān)于對稱軸對稱得出m﹣1=1﹣(﹣1)是解題的關(guān)鍵.12、AA的平均成績高于B平均成績【解析】

根據(jù)表格求出A,B的平均成績,比較大小即可解題.【詳解】解:A的平均數(shù)是80.25,B的平均數(shù)是79.5,∴A比B更優(yōu)秀,∴如果只招一名主持人,該選用A;依據(jù)是A的平均成績高于B平均成績.【點睛】本題考查了平均數(shù)的實際應(yīng)用,屬于簡單題,從表格中找到有用信息是解題關(guān)鍵.13、【解析】

作CD⊥AB,由tanA=2,設(shè)AD=x,CD=2x,根據(jù)勾股定理AC=x,則BD=,然后在Rt△CBD中BC2=BD2+CD2,即52=4x2+,解得x2=,則S△ABC===【詳解】如圖作CD⊥AB,∵tanA=2,設(shè)AD=x,CD=2x,∴AC=x,∴BD=,在Rt△CBD中BC2=BD2+CD2,即52=4x2+,x2=,∴S△ABC===【點睛】此題主要考查三角函數(shù)的應(yīng)用,解題的關(guān)鍵是根據(jù)題意作出輔助線進(jìn)行求解.14、10%【解析】

設(shè)平均每次上調(diào)的百分率是x,因為經(jīng)過兩次上調(diào),且知道調(diào)前的價格和調(diào)后的價格,從而列方程求出解.【詳解】設(shè)平均每次上調(diào)的百分率是x,依題意得,解得:,(不合題意,舍去).答:平均每次上調(diào)的百分率為10%.故答案是:10%.【點睛】此題考查了一元二次方程的應(yīng)用.解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程,再求解.15、.【解析】解:==,故答案為:.16、1.【解析】

先根據(jù)分式混合運算順序和運算法則化簡原式,再將a的值代入計算可得.【詳解】原式=÷=?=,當(dāng)a=3時,原式==1,故答案為:1.【點睛】本題主要考查分式的化簡求值,解題的關(guān)鍵是熟練掌握分式的混合運算順序和運算法則.三、解答題(共8題,共72分)17、(1)證明見解析;(2)1.【解析】試題分析:(1)根據(jù)垂直的定義可得∠CEB=90°,然后根據(jù)角平分線的性質(zhì)和等腰三角形的性質(zhì),判斷出∠1=∠D,從而根據(jù)平行線的判定得到CE∥BD,根據(jù)平行線的性質(zhì)得∠DBA=∠CEB,由此可根據(jù)切線的判定得證結(jié)果;(2)連接AC,由射影定理可得CE試題解析:(1)證明:∵CE⊥AB,∴∠CEB=90∵CD平分∠ECB,BC=BD,∴∠1=∠2,∠2=∠D.∴∠1=∠D.∴CE∥BD.∴∠DBA=∠CEB=90∵AB是⊙O的直徑,∴BD是⊙O的切線.(2)連接AC,∵AB是⊙O直徑,∴∠ACB=90∵CE⊥AB,可得CE∴在Rt△CEB中,∠CEB=90°,由勾股定理得BC=∴BD=BC=20.∵∠1=∠D,∠EFC=∠BFD,∴△EFC∽△BFD.∴.∴1220∴BF=1.考點:切線的判定,相似三角形,勾股定理18、1【解析】分析:按照實數(shù)的運算順序進(jìn)行運算即可.詳解:原式=1.點睛:本題考查實數(shù)的運算,主要考查零次冪,負(fù)整數(shù)指數(shù)冪,特殊角的三角函數(shù)值以及二次根式,熟練掌握各個知識點是解題的關(guān)鍵.19、(1)見解析;(2)成立;(3)【解析】

(1)根據(jù)圓周角定理求出∠ACB=90°,求出∠ADC=90°,再根據(jù)三角形內(nèi)角和定理求出即可;(2)根據(jù)圓周角定理求出∠BOC=2∠A,求出∠OBC=90°-∠A和∠ACD=90°-∠A即可;(3)分別延長AE、CD交⊙O于H、K,連接HK、CH、AK,在AD上取DG=BD,延長CG交AK于M,延長KO交⊙O于N,連接CN、AN,求出關(guān)于a的方程,再求出a即可.【詳解】(1)證明:∵AB為直徑,∴,∵于D,∴,∴,,∴;(2)成立,證明:連接OC,由圓周角定理得:,∵,∴,∵,∴,∴;(3)分別延長AE、CD交⊙O于H、K,連接HK、CH、AK,∵,,∴,∴,,∵,∴,∵根據(jù)圓周角定理得:,∴,∴由三角形內(nèi)角和定理得:,∴,∴,同理,∵,∴,在AD上取,延長CG交AK于M,則,,∴,∴,延長KO交⊙O于N,連接CN、AN,則,∴,∵,∴,∴四邊形CGAN是平行四邊形,∴,作于T,則T為CK的中點,∵O為KN的中點,∴,∵,,∴由勾股定理得:,∴,作直徑HS,連接KS,∵,,∴由勾股定理得:,∴,∴,設(shè),,∴,,∵,∴,解得:,∴,∴.【點睛】本題考查了垂徑定理、解直角三角形、等腰三角形的性質(zhì)、圓周角定理、勾股定理等知識點,能綜合運用知識點進(jìn)行推理是解此題的關(guān)鍵,綜合性比較強,難度偏大.20、(1)A(4,0),C(3,﹣3);(2)m=;(3)E點的坐標(biāo)為(2,0)或(,0)或(0,﹣4);【解析】

方法一:(1)m=2時,函數(shù)解析式為y=,分別令y=0,x=1,即可求得點A和點B的坐標(biāo),進(jìn)而可得到點C的坐標(biāo);(2)先用m表示出P,AC三點的坐標(biāo),分別討論∠APC=,∠ACP=,∠PAC=三種情況,利用勾股定理即可求得m的值;(3)設(shè)點F(x,y)是直線PE上任意一點,過點F作FN⊥PM于N,可得Rt△FNP∽Rt△PBC,NP:NF=BC:BP求得直線PE的解析式,后利用△PEC是以P為直角頂點的等腰直角三角形求得E點坐標(biāo).方法二:(1)同方法一.(2)由△ACP為直角三角形,由相互垂直的兩直線斜率相乘為-1,可得m的值;(3)利用△PEC是以P為直角頂點的等腰直角三角形,分別討論E點再x軸上,y軸上的情況求得E點坐標(biāo).【詳解】方法一:解:(1)若m=2,拋物線y=x2﹣2mx=x2﹣4x,∴對稱軸x=2,令y=0,則x2﹣4x=0,解得x=0,x=4,∴A(4,0),∵P(1,﹣2),令x=1,則y=﹣3,∴B(1,﹣3),∴C(3,﹣3).(2)∵拋物線y=x2﹣2mx(m>1),∴A(2m,0)對稱軸x=m,∵P(1,﹣m)把x=1代入拋物線y=x2﹣2mx,則y=1﹣2m,∴B(1,1﹣2m),∴C(2m﹣1,1﹣2m),∵PA2=(﹣m)2+(2m﹣1)2=5m2﹣4m+1,PC2=(2m﹣2)2+(1﹣m)2=5m2﹣10m+5,AC2=1+(1﹣2m)2=2﹣4m+4m2,∵△ACP為直角三角形,∴當(dāng)∠ACP=90°時,PA2=PC2+AC2,即5m2﹣4m+1=5m2﹣10m+5+2﹣4m+4m2,整理得:4m2﹣10m+6=0,解得:m=,m=1(舍去),當(dāng)∠APC=90°時,PA2+PC2=AC2,即5m2﹣4m+1+5m2﹣10m+5=2﹣4m+4m2,整理得:6m2﹣10m+4=0,解得:m=,m=1,和1都不符合m>1,故m=.(3)設(shè)點F(x,y)是直線PE上任意一點,過點F作FN⊥PM于N,∵∠FPN=∠PCB,∠PNF=∠CBP=90°,∴Rt△FNP∽Rt△PBC,∴NP:NF=BC:BP,即=,∴y=2x﹣2﹣m,∴直線PE的解析式為y=2x﹣2﹣m.令y=0,則x=1+,∴E(1+m,0),∴PE2=(﹣m)2+(m)2=,∴=5m2﹣10m+5,解得:m=2,m=,∴E(2,0)或E(,0),∴在x軸上存在E點,使得△PEC是以P為直角頂點的等腰直角三角形,此時E(2,0)或E(,0);令x=0,則y=﹣2﹣m,∴E(0,﹣2﹣m)∴PE2=(﹣2)2+12=5∴5m2﹣10m+5=5,解得m=2,m=0(舍去),∴E(0,﹣4)∴y軸上存在點E,使得△PEC是以P為直角頂點的等腰直角三角形,此時E(0,﹣4),∴在坐標(biāo)軸上是存在點E,使得△PEC是以P為直角頂點的等腰直角三角形,E點的坐標(biāo)為(2,0)或(,0)或(0,﹣4);方法二:(1)略.(2)∵P(1,﹣m),∴B(1,1﹣2m),∵對稱軸x=m,∴C(2m﹣1,1﹣2m),A(2m,0),∵△ACP為直角三角形,∴AC⊥AP,AC⊥CP,AP⊥CP,①AC⊥AP,∴KAC×KAP=﹣1,且m>1,∴,m=﹣1(舍)②AC⊥CP,∴KAC×KCP=﹣1,且m>1,∴=﹣1,∴m=,③AP⊥CP,∴KAP×KCP=﹣1,且m>1,∴=﹣1,∴m=(舍)(3)∵P(1,﹣m),C(2m﹣1,1﹣2m),∴KCP=,△PEC是以P為直角頂點的等腰直角三角形,∴PE⊥PC,∴KPE×KCP=﹣1,∴KPE=2,∵P(1,﹣m),∴l(xiāng)PE:y=2x﹣2﹣m,∵點E在坐標(biāo)軸上,∴①當(dāng)點E在x軸上時,E(,0)且PE=PC,∴(1﹣)2+(﹣m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,∴m2=5(m﹣1)2,∴m1=2,m2=,∴E1(2,0),E2(,0),②當(dāng)點E在y軸上時,E(0,﹣2﹣m)且PE=PC,∴(1﹣0)2+(﹣m+2+m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,∴1=(m﹣1)2,∴m1=2,m2=0(舍),∴E(0,4),綜上所述,(2,0)或(,0)或(0,﹣4).【點睛】本題主要考查二次函數(shù)的圖象與性質(zhì).擴(kuò)展:設(shè)坐標(biāo)系中兩點坐標(biāo)分別為點A(),點B(),則線段AB的長度為:AB=.設(shè)平面內(nèi)直線AB的解析式為:,直線CD的解析式為:(1)若AB//CD,則有:;(2)若AB⊥CD,則有:.21、(1)1輛大貨車一次可以運貨4噸,1輛小貨車一次可以運貨噸;(2)貨運公司應(yīng)安排大貨車8輛時,小貨車2輛時最節(jié)省費用.【解析】

(1)設(shè)1輛大貨車和1輛小貨車一次可以分別運貨噸和噸,根據(jù)“3輛大貨車與4輛小貨車一次可以運貨18噸、2輛大貨車與6輛小貨車一次可以運貨17噸”列方程組求解可得;(2)因運輸33噸且用10輛車一次運完,故10輛車所運貨不低于10噸,所以列不等式,大貨車運費高于小貨車,故用大貨車少費用就小進(jìn)行安排即可.【詳解】(1)解:設(shè)1輛大貨車一次可以運貨x噸,1輛小貨車一次可以運貨y噸,依題可得:

,

解得:.

答:1輛大貨車一次可以運貨4噸,1輛小貨車一次可以運貨噸.

(2)解:設(shè)大貨車有m輛,則小貨車10-m輛,依題可得:

4m+(10-m)≥33

m≥0

10-m≥0

解得:≤m≤10,

∴m=8,9,10;

∴當(dāng)大貨車8輛時,則小貨車2輛;

當(dāng)大貨車9輛時,則小貨車1輛;

當(dāng)大貨車10輛時,則小貨車0輛;

設(shè)運費為W=130m+100(10-m)=30m+1000,

∵k=30〉0,

∴W隨x的增大而增大,

∴當(dāng)m=8時,運費最少,

∴W=130×8+100×2=1240(元),

答:貨運公司應(yīng)安排大貨車8輛時,小貨車2輛時最節(jié)省費用.【點睛】考查了二元一次方程組和一元一次不等式的應(yīng)用,體現(xiàn)了數(shù)學(xué)建模思想,考查了學(xué)生用方程解實際問題的能力,解題的關(guān)鍵是根據(jù)題意建立方程組,并利用不等式求解大貨車的數(shù)量,解題時注意題意中一次運完的含義,此類試題常用的方法為建立方程,利用不等式或者一次函數(shù)性質(zhì)確定方案.22、見解析【解析】試題分析:依據(jù)題意,可通過證△ABC≌△EFD來得出AB=EF的結(jié)論,兩三角形中,已知的條件有AB∥EF即∠B=∠F,∠A=∠E,BD=CF,即BC=DF;可根據(jù)AAS判定兩三角形全等解題.

證明:∵AB∥EF,∴∠B=∠F.又∵BD=CF,∴BC=FD.在△ABC與△EFD中,∴△ABC≌△EFD(AAS),∴AB=EF.23、(1)直線y=x+4,點B的坐標(biāo)為(8,16);(2)點C的坐標(biāo)為(﹣,0),(0,0),(6,0),(32,0);(3)當(dāng)M的橫坐標(biāo)為6時,MN+3PM的長度的最大值是1.【解析】

(1)首先求得點A的坐標(biāo),然后利用待定系數(shù)法確定直線的解析式,從而求得直線與拋物線的交點坐標(biāo);(2)分若∠BAC=90°,則AB2+AC2=BC2;若∠ACB=90°,則AB2=AC2+BC2;若∠ABC=90°,則AB2+BC2=AC2三種情況求得m的值,從而確定點C的坐標(biāo);(3)設(shè)M(a,a2),得MN=a2+1,然后根據(jù)點P與點M縱坐標(biāo)相同得到x=,從而得到MN+3PM=﹣a2+3a+9,確定二次函數(shù)的最值即可.【詳解】(1)∵點A是直線與拋物線的交點,且橫坐標(biāo)為-2,,A點的坐標(biāo)為(-2,1),設(shè)直線的函數(shù)關(guān)系式為y=kx+b,將(0,4),(-2,1)代入得解得∴y=x+4∵直線與拋物線相交,解得:x=-2或x=8,

當(dāng)x=8時,y=16,

∴點B的坐標(biāo)為(8,16);(2)存在.∵由A(-2,1),B(8,16)可求得AB2==325.設(shè)點C(m,0),同理可得AC2=(m+2)2+12=m2+4m+5,BC2=(m-8)2+162=m2-16m+320,①若∠BAC=90°,則AB2+AC2=BC2,即325+m2+4m+5=m2-16m+320,解得m=-;②若∠ACB=90°,則AB2=AC2+BC2,即325=m2+4m+5+m2-16m+320,解得m=0或m=6;③若∠ABC=90°,則AB2+BC2=AC2,即m2+4m+5=m2-16m+320+325,解得m=32,∴點C的坐標(biāo)為(-,0),(0,0),(6,0),(32,0)(3)設(shè)M(a,a2),則MN=,又∵點P與點M縱坐標(biāo)相同,∴x+4=a2,∴x=,∴點P的橫坐標(biāo)為,∴MP=a-,∴MN+3PM=a2+1+3(a-)=-a2+3a+9=-(a-6)2+1,∵-2≤6≤8,∴當(dāng)a=6時,取最大值1,∴當(dāng)M的橫坐標(biāo)為6時,MN+3PM的長度的最大值是124、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論