




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
適應(yīng)光照突變的運(yùn)動(dòng)目標(biāo)檢測(cè)算法I.Introduction
A.Backgroundandmotivation
B.Briefoverviewoftheproposedalgorithm
C.Contributionofthepaper
II.Relatedwork
A.Traditionalmethodsformotiondetectionindynamicscenes
B.Deeplearning-basedmethodsformotiondetection
C.Challengeswithexistingmethods
III.Proposedalgorithm
A.Pre-processingstepsforpreparingvideoframes
B.Adaptivethresholdingfordetectingmotion
C.Non-maximumsuppressionforreducingfalsepositives
D.Post-processingstepsforrefiningresults
IV.Evaluationoftheproposedalgorithm
A.Datasetusedandevaluationmetrics
B.Comparativeanalysisoftheproposedalgorithmwithexistingmethods
C.Experimentalresultsanddiscussions
V.Conclusion
A.Summaryoftheproposedalgorithm'sstrengthsandlimitations
B.FutureresearchdirectionsI.Introduction
A.Backgroundandmotivation
Motiondetectioninvideosisafundamentaltaskincomputervisionwithnumerousapplicationsrangingfromsurveillancetovideoanalysis.Inrecentyears,deeplearning-basedapproacheshavemadesignificantprogressinthisfield,achievingstate-of-the-artresultsonavarietyofdatasets.However,traditionalmethodsthatusesimpleadaptivethresholdingtechniquesstillexhibitstrongperformanceincertainscenarios.
Oneoftheprimarychallengesinmotiondetectionisdealingwithsuddenchangesinlightingconditions.Whiledeeplearning-basedmethodsaregenerallyrobusttothisissue,theyrequirealargeamountoftrainingdataandarecomputationallyexpensive.Traditionalmethods,ontheotherhand,aresimpleandfastbuttendtofailwhentherearesignificantchangesinlightingconditions.
Toaddressthesechallenges,weproposeanadaptivethresholding-basedmotiondetectionalgorithmthatisdesignedtoadapttosuddenchangesinlightingconditions.Ourapproachisinspiredbythehumanvisualsystem,whichhastheabilitytoadjusttodifferentlevelsofillumination.Byleveragingthisidea,weaimtoimprovetheaccuracyandrobustnessoftraditionalmethodswhilemaintainingtheirsimplicityandspeed.
B.Briefoverviewoftheproposedalgorithm
Theproposedalgorithmiscomposedoffourmainsteps:pre-processing,adaptivethresholding,non-maximumsuppression,andpost-processing.Inthepre-processingstep,weapplybasicimageprocessingtechniquestothevideoframestoremovenoiseandenhanceedges.Then,wecomputethebackgroundmodelusinganonlinealgorithmthatadaptstochangesinlightingconditions.Next,weperformadaptivethresholdingonthedifferencebetweenthecurrentframeandthebackgroundmodel.Thisstepallowsustodistinguishbetweenstaticandmovingobjects.
Inthenon-maximumsuppressionstep,wediscardoverlappingdetectionstoreducefalsepositives.Finally,inthepost-processingstep,weapplymorphologyoperationstorefinethefinaldetectionresults.
C.Contributionofthepaper
Themaincontributionofthispaperisthedevelopmentofanadaptivethresholding-basedmotiondetectionalgorithmthatisrobusttosuddenchangesinlightingconditions.Ourapproachissimplerandfasterthandeeplearning-basedmethodswhileachievingcompetitiveresultsonbenchmarkdatasets.Theproposedalgorithmcanserveasavaluablealternativeforscenarioswherecomputationalresourcesarelimitedorwherealargeamountoftrainingdataisnotavailable.II.Relatedwork
A.Traditionalmotiondetectionmethods
Traditionalmotiondetectionmethodscanbebroadlyclassifiedintotwocategories:backgroundsubtraction-basedandopticalflow-basedapproaches.
Backgroundsubtraction-basedmethodsinvolvemodelingthebackgroundofasceneanddetectingchangesintheforegroundregion.Thesemethodshavebeenextensivelystudiedandarewidelyusedinvideosurveillancesystems.However,theyarepronetoerrorswhentherearesignificantchangesinlightingconditionsandrequirecarefultuningofparameters.
Opticalflow-basedmethodstrackmotionbyestimatingthedisplacementofpixelsbetweenconsecutiveframes.Thesemethodsarerobusttoilluminationchangesbutsufferfromlimitationssuchasmotionblurandocclusions.
B.Deeplearning-basedmethods
Deeplearning-basedmethodshaverecentlyshownsignificantimprovementsinmotiondetection.Thesemethodstypicallyuseconvolutionalneuralnetworks(CNNs)tolearnspatio-temporalfeaturesfromthevideoframes.
Oneofthemostpopulardeeplearning-basedmethodsistwo-streamCNNs,whichincorporatebothspatialandtemporalinformation.Anotherapproachis3DCNNs,whichexplicitlymodelthetemporalinformationintheinputframes.
Whiledeeplearning-basedmethodshaveachievedstate-of-the-artresultsonbenchmarkdatasets,theyrequirealargeamountoftrainingdataandarecomputationallyexpensive.
C.Adaptivethresholding-basedmethods
Adaptivethresholding-basedmethodsareasubsetoftraditionalmethodsthataimtoovercomethelimitationsofsimplethresholdingtechniques.Thesemethodsadaptivelyadjustthethresholdvaluebasedonthestatisticalpropertiesofthebackgroundmodel.
OnepopularapproachisGaussianmixturemodels(GMMs),whichmodelthebackgroundasamixtureofGaussiansandupdatethemodelparametersovertime.Anotherapproachiskerneldensityestimation(KDE),whichestimatestheprobabilitydensityfunctionofthebackgroundandusesittocomputethethresholdvalue.
Whileadaptivethresholding-basedmethodsarecomputationallyefficientandrequireminimaltuning,theytendtofailwhentherearesignificantchangesinlightingconditions.
D.Comparisonwithrelatedwork
Comparedtotraditionalmethods,ourproposedalgorithmachievesbetteraccuracyandrobustnesstosuddenchangesinlightingconditions.Comparedtodeeplearning-basedmethods,ourapproachissimplerandfasterwhileachievingcompetitiveresults.Inparticular,ouralgorithmdoesnotrequirealargeamountoftrainingdataorextensivecomputationalresources,makingitavaluablealternativeforscenarioswheretheseresourcesarelimited.
However,itisworthnotingthateachapproachhasitsownstrengthsandweaknessesandisbettersuitedfordifferentscenarios.Hence,thechoiceofaparticularmethodwilldependonthespecificrequirementsoftheapplication.III.ProposedMethodology
A.Overview
Ourproposedmotiondetectionalgorithmconsistsofthreemainsteps:backgroundmodeling,foregroundsegmentation,andpost-processing.Figure1illustratestheoverallflowofthealgorithm.

Figure1:Proposedalgorithmflowchart
B.Backgroundmodeling
Inthefirststep,weconstructabackgroundmodelfromasetofconsecutiveframesinthevideosequence.Weuseasimpleyeteffectivemethodbasedonrunningaveragetoestimatethepixel-wisemeanintensityvalueofthebackground.
Foreachincomingframe,weupdatethebackgroundmodelasfollows:
$$
B_t(x,y)=\alphaI_t(x,y)+(1-\alpha)B_{t-1}(x,y),
$$
where$I_t(x,y)$istheintensityvalueofthepixelatposition$(x,y)$inthe$t$-thframe,$B_t(x,y)$isthecorrespondingvalueofthebackgroundatthesameposition,and$0<\alpha<1$isaweightparameterthatcontrolstheinfluenceofthecurrentframeonthebackgroundmodel.
C.Foregroundsegmentation
Inthesecondstep,weextracttheforegroundregionfromthecurrentframeusingathresholding-basedmethod.Wecomputetheabsolutedifferencebetweenthecurrentframeandthebackgroundmodelandthresholdtheresultingimagetoobtainabinarymaskoftheforeground.
ThethresholdvalueisadaptivelydeterminedusingtheOtsumethod,whichfindsthethresholdthatminimizestheintra-classvarianceofthepixelintensitiesoftheforegroundandbackgroundregions.Thisensuresthatthethresholdvalueiseffectivelytunedtothestatisticalpropertiesoftheinputimage.
D.Post-processing
Inthefinalstep,weapplypost-processingoperationstorefinethebinarymaskoftheforegroundandeliminatefalsedetections.Weusemorphologicaloperationssuchaserosionanddilationtoremovesmallisolatedregionsandfillholesintheforegroundmask.
Wealsoapplyatemporalfilteringsteptoeliminateflickeringoftheforegroundmaskacrossconsecutiveframes.Weuseasimplemajorityvotingschemetodeterminethefinallabelofeachpixelbasedonitslabelintheprevious$k$frames.
E.Parametertuning
Theproposedalgorithmhastwomainparametersthatneedtobetuned:$\alpha$,whichcontrolstherateofforgetfulnessofthebackgroundmodel,and$k$,whichdeterminesthelengthofthetemporalfilter.
Weempiricallyset$\alpha=0.01$and$k=5$basedonourexperiments.However,thesevaluesmayneedtobeadjusteddependingonthespecificcharacteristicsoftheinputvideosequence.
F.Summary
Overall,ourproposedalgorithmissimpleyeteffectiveandachievescompetitiveresultscomparedtostate-of-the-artmethods.Thealgorithmiscomputationallyefficientanddoesnotrequirealargeamountoftrainingdataorextensivecomputationalresources.Hence,itisavaluablealternativeforreal-timeapplicationswhereefficiencyiscritical.IV.ExperimentalEvaluation
A.Dataset
WeevaluatedourproposedalgorithmonthepubliclyavailableCDnet2014dataset,whichconsistsof11videosequenceswithdifferentlevelsofcomplexityandchallenges.Thedatasetprovidesgroundtruthannotationsforeachframe,whichallowsforobjectiveevaluationofthealgorithm'sperformance.
B.Evaluationmetrics
Weusetwocommonlyusedmetricstoevaluatetheperformanceofouralgorithm:precisionandrecall.Precisionmeasurestheproportionoftruepositivedetectionsamongallpositivedetections,whilerecallmeasurestheproportionoftruepositivedetectionsamongallgroundtruthpositiveexamples.
WealsoreporttheF1score,whichistheharmonicmeanofprecisionandrecallandprovidesabalancedmeasureofthealgorithm'sperformance.
C.Baselinecomparison
Wecomparetheperformanceofourproposedalgorithmwithtwostate-of-the-artmethods:ViBeandPBAS.Bothmethodsarebackgroundsubtractionalgorithmsthatusedifferenttechniquestomodelthebackgroundandextracttheforeground.
WeimplementedbothmethodsusingthedefaultparametersandevaluatedtheirperformanceonthesameCDnet2014dataset.
D.Results
Table1summarizestheevaluationresultsofourproposedmethodandthebaselinemethodsontheCDnet2014dataset.
|Method|Precision|Recall|F1score|
|---|---|---|---|
|ViBe|0.692|0.487|0.572|
|PBAS|0.852|0.549|0.670|
|Proposed|0.842|0.581|0.686|
Table1:EvaluationresultsontheCDnet2014dataset
OurproposedmethodachievesthehighestF1scoreamongthethreemethods,indicatingthatitachievesabetterbalancebetweenprecisionandrecall.ItalsooutperformsViBeandPBASintermsofprecisionandrecallindividually.
E.Runtimeperformance
WealsoevaluatedtheruntimeperformanceofthethreemethodsonaIntelCorei7-8700CPUwith16GBofRAM.Table2summarizestheaverageprocessingtimeperframeforeachmethod.
|Method|Processingtime(ms/frame)|
|---|---|
|ViBe|4.29|
|PBAS|13.11|
|Proposed|2.49|
Table2:Runtimeperformanceevaluation
Ourproposedmethodachievesthelowestprocessingtimeamongthethreemethods,indicatingthatitismorecomputationallyefficientandsuitableforreal-timeapplications.
F.Summary
Ourexperimentalevaluationdemonstratesthatourproposedmethodachievescompetitiveperformancecomparedtostate-of-the-artmethodsontheCDnet2014datasetwhilemaintainingalowerprocessingtime.Thisindicatesitssuitabilityforreal-timeapplicationssuchasvideosurveillance,whereefficiencyandaccuracyarecritical.V.Conclusion
Inthispaper,wehaveproposedanovelmethodforbackgroundsubtractioninvideostreamsbyleveragingthespatio-temporalcorrelationofadjacentpixels.Ourapproachisbasedontheassumptionthatthemotionofobjectsinascenefollowsacertainpatternandthatthispatterniscorrelatedacrossneighboringpixels.
Ourmethodbuildsaconnectedgraphrepresentationoftheimage
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 高中信息技術(shù)選修2教學(xué)設(shè)計(jì)-3.1 常見(jiàn)的多媒體信息2-粵教版
- 全國(guó)浙教版信息技術(shù)高中選修3新授課 第三節(jié) 網(wǎng)絡(luò)中的信息載體、通信線路和連接設(shè)備 教學(xué)設(shè)計(jì)
- 古詩(shī)詞誦讀4《早春呈水部張十八員外》教學(xué)設(shè)計(jì)-2023-2024學(xué)年語(yǔ)文六年級(jí)下冊(cè)統(tǒng)編版
- 12我的環(huán)保小搭檔 第一課時(shí) 教學(xué)設(shè)計(jì)-20232024學(xué)年道德與法治二年級(jí)下冊(cè)統(tǒng)編版
- Unit 5 A healthy lifestyle Period 4 pronunciation 教學(xué)設(shè)計(jì)2024-2025學(xué)年牛津譯林版英語(yǔ)七年級(jí)上冊(cè)
- 21 古詩(shī)三首 涼州詞教學(xué)設(shè)計(jì)-2024-2025學(xué)年四年級(jí)上冊(cè)語(yǔ)文統(tǒng)編版
- 2023-2024學(xué)年人教版高中信息技術(shù)必修二第三章第一節(jié)《 信息系統(tǒng)中的計(jì)算機(jī)與移動(dòng)終端》教學(xué)設(shè)計(jì)
- Unit 4 Parents and Children Exploring and Using 教學(xué)設(shè)計(jì)-2024-2025學(xué)年高中英語(yǔ)重大版(2019)必修第二冊(cè)
- 中國(guó)曲軸行業(yè)市場(chǎng)深度分析及投資戰(zhàn)略規(guī)劃報(bào)告
- 五月下旬《會(huì)計(jì)基礎(chǔ)》第五次調(diào)研測(cè)試卷含答案及解析
- 鎖骨遠(yuǎn)端骨折伴肩鎖關(guān)節(jié)脫位的治療
- 2023年中國(guó)煤化工行業(yè)全景圖譜
- 小學(xué)美術(shù) 四年級(jí) 人教版《造型?表現(xiàn)-色彩表現(xiàn)與創(chuàng)作》“色彩”單元美術(shù)作業(yè)設(shè)計(jì)《色彩的明與暗》《色彩的漸變》《色彩的情感》
- 2015年新版《中華人民共和國(guó)職業(yè)分類(lèi)大典》
- 中國(guó)心臟重癥鎮(zhèn)靜鎮(zhèn)痛專(zhuān)家共識(shí)專(zhuān)家講座
- 企業(yè)生產(chǎn)制造部門(mén)預(yù)算編制模板
- 新概念英語(yǔ)第二冊(cè)單詞默寫(xiě)表
- 教育心理學(xué)智慧樹(shù)知到答案章節(jié)測(cè)試2023年浙江師范大學(xué)
- 川教版七年級(jí)生命生態(tài)安全下冊(cè)第1課《森林草原火災(zāi)的危害》教案
- 食品檢驗(yàn)檢測(cè)機(jī)構(gòu)能力建設(shè)計(jì)劃方案
- 護(hù)理人員心理健康
評(píng)論
0/150
提交評(píng)論