一種增強的Fuzzy ART在蘋果圖像分割中的實現(xiàn)-設(shè)計應(yīng)用_第1頁
一種增強的Fuzzy ART在蘋果圖像分割中的實現(xiàn)-設(shè)計應(yīng)用_第2頁
一種增強的Fuzzy ART在蘋果圖像分割中的實現(xiàn)-設(shè)計應(yīng)用_第3頁
一種增強的Fuzzy ART在蘋果圖像分割中的實現(xiàn)-設(shè)計應(yīng)用_第4頁
一種增強的Fuzzy ART在蘋果圖像分割中的實現(xiàn)-設(shè)計應(yīng)用_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

精品文檔-下載后可編輯一種增強的FuzzyART在蘋果圖像分割中的實現(xiàn)-設(shè)計應(yīng)用

中國是世界上的蘋果生產(chǎn)國和消費國,蘋果種植面積和產(chǎn)量均占世界總量的40%以上,在世界蘋果產(chǎn)業(yè)中占有重要地位。中國蘋果有黃土高原、渤海灣、黃河故道和西南冷涼高地四大產(chǎn)區(qū),根據(jù)氣候和生態(tài)適宜標(biāo)準(zhǔn),西北黃土高原產(chǎn)區(qū)和渤海灣產(chǎn)區(qū)是中國適蘋果發(fā)展產(chǎn)區(qū),兩個區(qū)域蘋果栽培面積分別占全國的44%和34%,產(chǎn)量分別占全國的49%和31%,出口量占全國的90%以上。黃河故道產(chǎn)區(qū)屬于蘋果生產(chǎn)的次適宜區(qū),西南冷涼高地蘋果生產(chǎn)規(guī)模小、產(chǎn)業(yè)基礎(chǔ)差,無法滿足蘋果生產(chǎn)優(yōu)勢區(qū)域的要求。本文所采用的紅富士蘋果圖像是使用數(shù)碼相機(佳能A710IS)在實際環(huán)境中在自然光源下拍攝的。

圖像分割是一種重要的圖像技術(shù),在理論研究和實際應(yīng)用中都得到了人們的廣泛重視。圖像分割的方法和種類有很多,有些分割運算可直接應(yīng)用于任何圖像,而另一些只能適用于特殊類別的圖像。有些算法需要先對圖像進行粗分割,因為他們需要從圖像中提取出來的信息。例如,可以對圖像的灰度級設(shè)置門限的方法分割。值得提出的是,沒有的標(biāo)準(zhǔn)的分割方法。許多不同種類的圖像或景物都可作為待分割的圖像數(shù)據(jù),不同類型的圖像,已經(jīng)有相對應(yīng)的分割方法對其分割,同時,某些分割方法也只是適合于某些特殊類型的圖像分割。分割結(jié)果的好壞需要根據(jù)具體的場合及要求衡量。圖像分割是從圖像處理到圖像分析的關(guān)鍵步驟,可以說,圖像分割結(jié)果的好壞直接影響對圖像的理解。

特征提取是基于神經(jīng)網(wǎng)絡(luò)圖像分割的重要組成部分,是目標(biāo)分類的關(guān)鍵步驟。由于只基于一種圖像特征的方法只能表現(xiàn)圖像的部分信息,對圖像信息的描述比較片面,缺乏足夠的區(qū)分依據(jù),在大量的圖像分割應(yīng)用中不能取得很好的分割效果,因此可以研究如何利用顏色、形狀、紋理等特征的組合來提取圖像的特征,比較全面地描述圖像內(nèi)容。

本文研究了基于灰度-紋理的特征提取方法,組成特征向量,經(jīng)過規(guī)范化和歸一化的處理后,輸入自確定警戒線的FuzzyART神經(jīng)網(wǎng)絡(luò),對蘋果圖像完成初次分割,然后進行二值化和圖像平滑后得到蘋果圖像的傷疤部分。

1FuzzyART神經(jīng)網(wǎng)絡(luò)基本原理

FuzzyART結(jié)構(gòu)與ART1基本相同,但增加了對輸入向量的歸一化處理。FuzzyART網(wǎng)絡(luò)的結(jié)構(gòu)如圖1所示,

FuzzyART網(wǎng)絡(luò)的工作過程為:輸入矢量a經(jīng)F0預(yù)處理產(chǎn)生的信號I進入F1后,經(jīng)過類別選擇,通過與F1的連接權(quán)在F1中產(chǎn)生一個自上而下的激勵信號,這一信號與自下而上的輸入I進行匹配比較后,若匹配度超過警戒線(vigilance)ρ,則發(fā)生共振,F(xiàn)2與F1之間的連接權(quán)得到加強;否則重置F2以進行新的匹配。如果所有已學(xué)習(xí)過的類都與輸入I不匹配,則將其作為新類加入到網(wǎng)絡(luò)中。,自適應(yīng)確定a屬于F2層N個類別節(jié)點中的哪一類。

2自適應(yīng)確定參數(shù)的FuzzyART

神經(jīng)網(wǎng)絡(luò)輸入的是十進制數(shù)據(jù),這使得網(wǎng)絡(luò)的參數(shù)估計變得更加困難,因此實現(xiàn)網(wǎng)絡(luò)參數(shù)的自適應(yīng)確定可以提高精度和節(jié)約時間。

自適應(yīng)確定警戒線的FuzzyART網(wǎng)絡(luò)算法如下:

3蘋果圖像的特征提取

3.1基于顏色的特征提取

很多研究方法都把圖像顏色信息作為特征向量用于基于顏色信息的圖像分割的研究,但是傳統(tǒng)的基于顏色的特征提取方法有一些缺點,圖像的顏色信息只是對每個像素各自的信息進行描述,不能提供任何這些像素點間的聯(lián)系。圖像是一個完整的整體,顏色只能描述圖像單個像素點的信息,卻不能描述圖像的空間位置信息。

例如,圖2所示3幅圖像不同,但具有相同的直方圖。當(dāng)采用顏色信息分析圖像的特征時,只能對處在同一灰度級的像素點的數(shù)量之間進行分析,而無法對顏色總量相近但空間分布并不相同的圖像進行空間信息的分析。因此,提取蘋果圖像的顏色特征并不能將圖像的空間位置信息也提取出來,不能充分、完整地描述蘋果圖像的內(nèi)容。

3.2蘋果圖像紋理特征提取

在實際的圖像分割應(yīng)用中,特征組合的分割方法有很多好處,不同特征的優(yōu)勢可以達(dá)到互補的效果,可以更全面地表現(xiàn)圖像的信息。在顏色特征的基礎(chǔ)上加上紋理特征,以灰度作為顏色特征,僅僅代表了圖像中各像素點的亮度信息,而未包含圖像顏色的空間分布內(nèi)容,加上圖像的紋理特征之后可以體現(xiàn)出圖像局部空間的信息,有效地補充了顏色特征的不足,能夠取得很好的分割效果。

因此本文在這里研究了基于灰度-紋理特征的圖像分割方法。提取蘋果圖像中表示"亮"的程度的灰度值,并規(guī)范化處理到[0,1],如式(6)所示;對于紋理特征,采用灰度共生矩陣法提取能量特征,如式(3)所示,與灰度特征組成特征向量。然后對特征向量歸一化處理,這種處理方式稱為補碼編碼。經(jīng)過規(guī)范化和歸一化的處理后,可以得到模糊特征向量,如式(8)所示。

4實驗與結(jié)果分析

實驗中,為了兼顧計算量和特征量,減少灰度共生矩陣的尺寸,將原始圖像的灰度級重新量化為8級,圖像的分割采用自適應(yīng)警戒線的FuzzyART神經(jīng)網(wǎng)絡(luò)。

實驗步驟如下:

(1)將9×9的窗口在待分割的蘋果圖像上滑動,采用灰度共生矩陣的方法提取紋理特征,結(jié)合灰度特征組成模糊特征,對模糊特征規(guī)范化和歸一化處理后,并將它作為窗口中心像素點的特征向量I;

(2)將處理好的模糊特征I輸入FuzzyART神經(jīng)網(wǎng)絡(luò)進行訓(xùn)練分類,并標(biāo)記中心像素點;

(3)根據(jù)中心像素點的標(biāo)記,將蘋果圖像分割為幾類,獲得圖像的初次分割結(jié)果;

(4)對初次分割的結(jié)果,進行二值化處理;

(5)對圖像進行中值濾波,并將分割結(jié)果標(biāo)記到原圖,從而提取傷疤。

采用上述步驟對一幅256×256像素、256級灰度的圖像進行處理,本文采用的其他參數(shù)分別為α=1、β=0.9,二值化閾值T=80,警戒線ρ的初始值采用0.75.

圖3(a)所示是用灰度和紋理相結(jié)合的模糊特征輸入FuzzyART網(wǎng)絡(luò)的分割結(jié)果,傷疤部分基本被分割出來;圖3(b)是閥值T=35時的分割結(jié)果,雖然噪聲也比較少,但是傷疤的部分缺失的部分也很多;圖3(c)是閾值T=55時的分割結(jié)果,傷疤部分缺失比較少而且輪廓比較完整,但是噪聲也增加了,陰影部分的區(qū)域也被分割為傷疤;圖3(d)是閾值T=75時的分割結(jié)果,雖然傷疤部分越來越完整,但是噪聲變得更多。從圖3可以看出,隨著閾值的增加,傷疤部分越來越完整,噪聲也越來越多;相反,隨著閾值的減少,傷疤缺失的部分越來越多,噪聲也有變少。閾值分割無法在保證傷疤部分缺失比較小的同時,噪聲也比較少,或者基本沒有。

圖4(a)所示是以坐標(biāo)為(90,141)的像素點作為種子(如箭頭指示)區(qū)域生長的結(jié)果,傷疤部分幾乎沒有分割出來;圖4(b)是以坐標(biāo)為(178,79)的像素點作為種子區(qū)域生長的結(jié)果,雖然噪聲也比較少,但是傷疤的部分缺失的部分也很多。從圖4可以看出區(qū)域生長的幾個缺點為:要通過人工交互獲得種子像素點,因而使用者必須在每個目標(biāo)區(qū)域中選擇一個種子點;區(qū)域生長法對噪聲較敏感,容易導(dǎo)致分割出的區(qū)域出現(xiàn)空洞;而且通常會造成過度的分割,也就是說,把圖像分割成過多的區(qū)域。

實驗證明,對有缺陷的蘋果圖像,基于灰度和紋理提取特征向量,用自適應(yīng)確定警戒線的FuzzyART神經(jīng)網(wǎng)絡(luò)可以較正確地分割出傷疤區(qū)域。

農(nóng)產(chǎn)品圖像

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論