




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
電接觸的原理應(yīng)用和技術(shù)教材ElectricalContactsFundamentals,ApplicationsAndTechnologyChapter3Tribology電氣工程電力工程教材教程 3Tribology3.1FRICTIONFrictionisthemostwidespreadphenomenonindailylife.StudiesoffrictiondatebacktothetimesofAristotleandLeonardo.25Frictionaccompaniesnotonlyanymotion,butalsotendencyfordisplacement.Althoughtheterm“friction”iswell-known,fewpeoplerealizewhatitreallymeansbecauseofthehighlyintricatenatureofthisphenomenon.Primarily,internalfriction,asresistancetorelativedisplacementofthecomponentsofoneandsamebody,shouldbediscriminatedfromtheexternalfrictionofsolidsorjustfrictionthatistreatedbelow.Frictioncanbeconsideredasaformationofrealcontactareaundernormalloadandshearingofthecontactinterface.Theenvironmentisanadditionalimportantfactorinfluencingtheprocess.Thiscombinationresultsinnumeroussurfaceeffectsandavarietyoffrictionmechanisms.Slidingfrictionoccursbetweentworelativelymovingbodiesincontact,inwhichtheirsurfacevelocitiesinthecontactareaaredifferentwithrespecttomagnitudeand/ordirection.Itisgovernedbytheprocessesthatoccurinthinsurfacelayers.Therearetwomainnoninteractingmechanismsoffriction:adhesionanddeformation.23,24Thisideaisessentialforthetwo-termmodeloffriction,althoughtheindependenceofthesemechanismsisamatterofconvention.3.1.1LAWSOFFRICTIONWhentwobodiesareincontact,atangentialforcemustbeappliedtoproducetheirrelativedisplacement.Whenthisforceincreasesfromzerotoafinitevalue,microdisplacementdoccursinthecontactzone,thoughthebodiesthemselvesremainmotionlessasawholeuntilthetangentialforcesreachessomelimitingvaluetermedthestaticfrictionforce,Fs(Figure3.1).TheintermediatevaluesoftheappliedtangentialforceFintaretermedthepartialstaticfrictionforce.Apparently,thereisaforcethatimpedesthebreakofrelativestateatrestandincipientmotion.Theforceisalwaysnonzeroandpossessesafinitevalue.Thisprincipalfactshouldbetreatedasthefundamentallawoffrictionthatcanbeformulatedasfollows:astaticfrictionexistswhentwosolidsformacontact.Toretainthenumberingofthelaws,asisacceptedinthetribologicalliterature,thislawshouldbetermedthezerolaw.Notwithstandingitssimpleformulation,thislawisofgreatsignificance.Itisexactlythefrictionatrestthatisatypicalfeatureofexternalfrictiondistinguishingitfromtheinternalfrictioninducedbyanyinfinitesimaltangentialdisplacement.Moreover,withoutstaticfrictiontheworldwouldbequeerandeerie,ifitwouldexistatall.Humanswouldnotbeabletowalkintheircustomaryshoes.Abookplacedonadeskwouldgraduallyslipoffasifitwasslidingdownaslope.Thetiresofanyvehiclewouldslide.ReferringtoFigure3.1,afterthebodybeginstomove,theresistancetoitsmotiondecreasesbutitnevervanishescompletelybecauseitremainsapproximatelyconstantiftheconditionsformotionremainunchanged.Thisresistancetomotionistermedkineticfrictionandtheresistanceforceistermedthekineticfrictionforce,Fk.35q2006byTaylor&FrancisGroup,LLCTherelationbetweenthefrictionforce(staticorkinetic)andnormalloadiscommonlytermedthecoefficientoffriction(staticorkinetic,respectively).LeonardodaVinci(1452–1519)believedthatthecoefficientoffrictionofsmoothsurfaceswasconstantandequalto0.25.Thisviewpointpersistedinscienceforaverylongtime.GuilliomAmontons(1663–1705)assumedthatthefrictioncoefficientofiron,leather,lead,andwoodwasequalto1/3.Inreality,thecoefficientoffrictionmayvaryoverawiderange,fromapproximately0.001inrollingbearingsunderlightloadstotensofunitsbetweenthoroughlycleanedsurfaceslikemetalscontactinginvacuum.Asarule,undernormalconditionsoffrictioninair,thecoefficientoffrictionchangeswithinacomparativelynarrowrangefrom0.1to1.Itisnotthemagnitudeofthefrictioncoefficientbutratheritsconstancythat,infact,istheessentialimplicationofthefirstlawoffriction,frequentlycalledtheAmontons’law.Figure3.2showsasimpleexperimentaldesignillustratingthislaw.Ifabody(forinstance,abook)liesontheplaneandhastheweightP,theforceneededtomovethisbodyisequaltoF.Tomoveapileofnbooks(nZ2inthefigure),thetangentialforceshouldbentimeslarger.Therefore,thefirstlawoffrictionisformulatedinthefollowingmanner:thefrictionforceisdirectlyproportionaltothenormalload.Whenmdesignatesthecoefficientoffrictionthat,fromtheaboveformulation,isconstantandindependentofthenormalload,thefirstlawoffrictionstatesthat:FZmP:(3.1)XFFkFsdFintFIGURE3.1Transitionfromstaticfrictiontokineticfriction.W2WF1F2FIGURE3.2Thefrictionforceincreasespracticallyproportionallytotheappliednormalload(firstlawoffriction.)ElectricalContacts:Fundamentals,ApplicationsandTechnology36q2006byTaylor&FrancisGroup,LLC’statementreceivedacoolwelcomebytheFrenchRoyalAcademyofSciences,whichinstructedsenioracademicianDelaHiretoverifyAmontons’experiments.Additionaltests(1699–1700)corroboratedbothofAmontons’lawsandhisformulationofthesecondlawforestalledmodernideasthatsolidsareindiscretecontact.Expresseditinmodernterms,Amontons’paradoxarisesbecausesolidsareincontactbyindividualspotsbecausetheirrealsurfacesareroughandtheyareunabletocontactovertheirentirenominalsurfaces.Thetotalareaofthespots(realcontactareawhichistreatedmorethoroughlyinsubsequentchapters)isverysmallcomparedwiththeapparentarea.Ifthelatterisspecified,experienceshowsthattherealareaincreaseslinearlyasafunctionofload.Thefrictionforce,inturn,isproportionaltotherealcontactarea.Differentfacesofthespecimencanbearrangedsothattheareaoftherealcontactismaintainedanddependsonlyontheload.Consequently,itisclearwhyfrictiondoesnotdependontheapparentcontactarea.Thethirdlaw,oftenattributedtoCoulomb(1736–1806),isaddedtotheabovetwo:thefrictionforcedoesnotdependontheslidingvelocity.Thislawwaslesssubstantiatedthantheothers.Incidentally,Coulombobservedinhisexperimentsthatthefrictionforceincreasesordecreasesasafunctionofvelocity.Nevertheless,thislawcanbetruewithinareasonablerangeofvelocities,providedthatthecontacttemperatureinfrictionvariesinsignificantlyandthefeaturesofthecontactzoneremainpracticallyunchanged.nAm<AnF1F2F1=F2FIGURE3.3FragmentofLeonardodaVinci’sdrawingillustratingthesecondlawoffriction.Tribology37q2006byTaylor&FrancisGroup,LLCInconclusion,itshouldbenotedthatthelawsoffrictionaregoodempiricalrulesallowingtacklingthetribologicalsituationsemerginginvariousapplications.3.1.2REALCONTACTAREAWhentwosurfacesapproacheachother,theiropposingasperitieswithmaximumheightcomeintocontact.Astheloadisincreased,newpairsofasperitieswithsmallerheightscomeintocontact,formingindividualspots.Theoverallareaofthesespotsisknownastherealcontactarea(seeChapter2).Therealcontactareadependsbothonthemechanicalbehaviorofthesurfacelayersandtheirroughness.Thelattermayvaryundercompressionandfrictionconditions.Whentherealcontactareaisbuiltup,partsofthesurfaceasperitieselasticallydeform;othersundergoplasticstrain.Inthegeneralcase,thedeformationiselastoplasticwithhardening.Therealcontactareavariesindirectproportionwithloadtothepowerindexintherangefrom2/3to1.Aloadindexveryclosetounityisnotanindicationofthecontactplasticdeformationbecausethecontactbehaviorisalsogovernedbystatisticalgeometryofroughsurfacesincontact.Themeandiameterofasinglecontactspotisscarcelyaffectedbytheappliedload.Therateofthespotareagrowthisaboutanorderofmagnitudelessthanthatoftherealcontactarea.Therealcontactareaincreaseswithincreasingcurvatureradiusofasperityanddecreaseswhenyieldpoint,elasticitymodulus,andmaterialhardeningincrease.3.1.3INTERFACIALBONDS(ADHESIONCOMPONENTOFFRICTION)Iftwocleansurfacesarebroughtintocontact,theforcesofattractionatinteratomicdistancesarethesameasinthebulk.Severaltypesoftheseforcescanbedifferentiated(Figure3.4).10Theionicbondoccursbetweenanionsandcationsheldtogetherbyelectrostaticforces.Theionicsolidshavehighstrength;suchisthecaseofaluminumoxide.Thecovalent(homopolar)bondbetweenneutralatomsisgeneratedbyoverlapoftheirelectronfieldsthatresultsinverystrongbondingforcesincrystallinesolidssuchasdiamond.ThevanderWaalsbondmayoccurbetweenanyatomsandmoleculesduetodipole–dipoleinteraction(theatomsaretreatedasmomentarydipolesbecausethecentersofpositiveandnegativechargesareinequitableatanytime).Itisresponsibleforphysicaladsorptionofenvironmentalspeciesbyasolidsurface.Themetallicbondisfoundinallmetalsandisrealizedbyfreeelectronsfreelymovinginioniclattice.Thebondingisgeneratedbetweentherubbingsurfacesonlywhenthesurfacefilmsareabsent(e.g.,whenslidinginhighvacuumorwhenwearrateofthefilmexceedstherateoffilmformation).Eachindividualatominthebulkofamaterialinteractswithitsnearestneighborsthroughtheseforces.Aspecificamountofenergyassociatedwiththeinteractionisreferredtoasthecohesiveenergythatplaysanimportantpartintribology.Anatominthefreesurfaceisunderdifferentconditionsbecausethenumberofneighborshasbeenreducedand,asaresult,thereisnobondingoutsidethesolid(Figure3.5).Forthisreason,thesurfaceexhibitsanexcessenergyknownasthesurfaceenergy.Thisenergycontrolsthecapacityofsurfacestoformtheadhesivejunctions.IonicCovalentVanderWaalsMetallicFIGURE3.4Maintypesofbondingforces.ElectricalContacts:Fundamentals,ApplicationsandTechnology38q2006byTaylor&FrancisGroup,LLCAdhesionreferstoanatomicbondingprocessthatoccursbetweencontactingpointsonopposingsurfaces.Thejunctionsmayformatbothstaticcontactandfriction.BowdenandTaborhaveproposedthesimplemodeloftheadhesivejunctionformation.23Itisamatterofgeneralexperiencethatcleanironsurfacesseizeinvacuumduetoformationofstrongadhesivebonds.Thisisnotalwaysthecasewhenthesurfacescomeintocontactatnormalconditions.Thejunctionsmayappearonlybetweenverysmoothsurfacesunderhighloadand,inthiscase,amutualmicroslipofthematingsurfacesisdesirable.Thisisduetothepresenceoftheabsorbedfilms(includingnaturaloxides),moisture,andothersubstancesonthesolidsurface.Thesecontami-nantslowerthesurfaceenergy,therebyreducingthepossibilityofstrongjunctionformation.Initially,whentworoughsurfacesareapproachingoneanother,atleasttwoasperitiescomeintocontact.Becausethecontactareaissmall,thepressureisveryhigh,evenunderaverysmallload.Thematerialofthesofterasperityundergoesplasticflow;thesurfacescontinuetoapproach,bringingmoreandmoreasperitiesintocontact.Theprocesscontinuesuntiltheareaofcontactbecomessufficienttowithstandtheload.Theareaofanindividualcontactspot,An,isproportionaltotheload,Pn,andinverselyproportionaltotheyieldpointofthesoftermaterial,pm:AnZPnpm:(3.2)ThissimpleexplanationisthebasisofthemodelofslidingfrictiondevelopedbyBowdenandTabor.23Theyassumedthatthe“weldingbridges”(adhesivebonds)appearoneachcontactspotwiththeshearstrengthequaltos.Thesebondsfail(undergoshear)duringrelativeslidingofthesurfaces;hence,thefrictionforceisequaltothisshearingforce.Analytically,thefrictionforcecanbewrittenasFZArs;(3.3)whereAristhetotalrealcontactareaequaltoSAn.SubstitutingthisvalueinsteadofAryieldsFZPspm;(3.4)wherePZSPn.Phase1Phase2Interfaceγsγ2γ1FIGURE3.5SurfaceenergygS(shadedregion)asanexcessenergyofphases1and2thatarebroughtintocontact.Tribology39q2006byTaylor&FrancisGroup,LLCFromthissimpleequation,itfollowsthatthefrictionforceisproportionaltotheloadandindependentoftheapparentcontactarea;thisisinagreementwiththefirsttwolawsoffriction.Itisworthwhiletonotethattheshearstrength,s,ofthemajorityofmetalsisontheorderof0.2pm.Thecoefficientoffriction,mZF/P,then,isequaltos/pmZ0.2.ThisvalueisclosetothatproposedbyLeonardodaVinci,butstillnotsufficientwithrespecttorealfrictionvalues.Thefactisthattheexplanationinquestionisextremelysimplifiedandignoresalargenumberoffactors.Forexample,itwasassumedthatplasticflowduringcompressionofamaterialandtheshearingofadhesivebondsevolvedindependently.Thisisnotquitetrueifthecontactingrubbingmaterialsarehardenedand/oradhesivebonds(junctions)growunderthecombinedeffectofnormalandtangentialforces.Inreality,inaccordancewiththeyieldcriterion,arelationshipbetweennormal,p,andtangential,s,stressesaffectingthebondingshouldexistasp2Cas2Zp2m:(3.5)Here,pmistheyieldpointofamaterialduringuniaxialcompression,wherepZP/ArandF/Ar.Whenasurfaceasperityundergoescompletetransformationintotheplasticstateundernormalloading,thensZ0andpZpm.Generallyspeaking,theyieldcriterionbreaksdownwhenatangentialloadisapplied.Toretainitsvalidity,thenormalstressesshouldbereduced.ThisoccurswhenthecontactareaincreasestoacertainvalueAwhensurfacescomeintoamoreintimatecontact.Substitutionofpandsshowsthatthecontactspotareaincreasesinthefollowingmanner:Aw1CaeF=PT2??1=2:(3.6)Itmightseemthatthecontactspotareawouldexpandunrestrictedasthetangentialloadincreases.However,duetoanumberoffactors,includingthelimitedshearstrengthsaofadhesivebonds,thebondsfailandslidingbeginsatadefinitevalueofFZsaA.ItfollowsfromtheprecedingequationsthatthefrictioncoefficientisequaltomZsapZaes=saT2K1????K1=2(3.7)Hence,itisapparentthatiftheshearingstrengthofadhesivebondsisclosetotheshearingstrengthofthemetal,thecoefficientoffrictionmaytakeanyarbitrarilylargevalue.Yet,itdropssharplywhensadecreases,forexample,whensaZ0.7(ataZ10)oftheshearstrengthofthemetal,thecontactspotareaincreases1.4timesandthecoefficientoffrictionmZ0.31.Asimilarsituationoccurswhenthecontactingsurfacesmoverelativetoeachother(kineticfriction).However,rubbingmayfacilitatepenetrationofprotectivesurfacefilms,allowingastrongjunctiontoform.Therefore,thenatureofadhesivejunctionsformingatfrictionmaybeverydifferent:fromthestrongmetallicbondsbetweenvirginportionsofthecontactingsurfacestotheweakvanderWaalsbondsbetweentheabsorbedfilmsprotectingtherubbingbodies.Thejunctionswillhavetobeshearedundertheappliedtangentialforce.Thisisthefrictionalforce.Thatis,theworkcompletedbythefrictionalforceisextendedfordamagetotheinterfacialbonds.Frictionisthereforetreatedasaprocessofcontinuousformationandfractureofadhesivebonds.Thisworkcompletedbythefrictionalforceisextendedfordamagetotheinterfacialisessenceofadhesion(molecular)componentoffriction.Whentangentialloadisapplied,thebondsaresheared.Theirshearingstrengthisdeterminedby:tnZt0Cbpr(3.8)ElectricalContacts:Fundamentals,ApplicationsandTechnology40q2006byTaylor&FrancisGroup,LLCwheret0andbareempiricalconstantsdependingoncharacterofsurfaceinteraction;prispressureonasinglecontactspot.ThisrelationshipwasfirstobtainedbyBridgmaninhisstudyofhighpressures.Thesitewherefractureoccursdependsontherelativestrengthofthejunctionandtherubbingmaterials(Figure3.6).Iftheinterfacialbondingisstrongerthanthecohesivestrengthoftheweakermaterial,thenthismaterialisfracturedandthematerialtransfertakesplace.Otherwise,fractureoccursattheinterface.Ingeneral,theinterfacialjunctions(theirformation,growthandfracture)areinfluencedbythenatureandchemistryofthesurfaceandthestressstateofsurfacelayers(theloadingconditions).Theinterfacialjunctions,togetherwithproductsoftheirfractureandthehighlydeformedlayerswheresheardeformationislocalized,havebeennamedbyKragelskiiasathirdbody.24Thistermimpliesthatthematerialentrappedinthefrictionprocessmaypossesspropertiesthatdifferdras-ticallyfromthoseoftherubbingmaterials.3.1.4DEFORMATIONATFRICTIONAnothersourcefromwhichthefrictionalforcearisesisattributedtodeformationoccurringwhentheasperitiesoftwoslidingsurfacescomeintocontactwitheachother.Thisdeformationisaccompaniedbydissipationofmechanicalenergymechanismsthatmaybehighlydiversified,dependingondeformationmode,slidingconditions,rubbingmaterials,environment,andotherfactors.IntheBowden–Tabormodelforslidingfriction,theasperitiesofthehardersurfaceareassumedtoploughthroughthesoftercounterpart.Theploughingresistancecausesaforcecontributingtothefrictionalforce.Thiscontributionisreferredtoastheploughingcomponentoffriction,i.e.,thedeformationterm.AssumethatundertheloadPasinglecone-shapedasperitywiththeopeningangle2w(Figure3.7)penetratestoadepthhintotheplasticmaterialwiththehardnessH.UndertheactionofthetangentialforceF,theconeploughsagrooveintothesoftermaterial.Thisgrooveisatriangleinthecrosssectionwithheighthandbase2a.Astheconemoves,thenormalloadisapparentlysustainedbythesemicirclewiththeradiusa,i.e.,thefollowingrelationshouldexistbetweentheloadPandthedepthhtowhichtheirregularitypenetrates:PZ0:5ph2Htan2w;(3.9)wherelaZhtanw.Ontheotherhand,thetangentialforce(dragforce)equaltothefrictionforceshouldovercometheresistanceofthematerialaheadoftheindenter,i.e.,itactsonthecrosssectionofthegroovewiththeareaequaltoahZh2tanw,thenAdhesivefractureCohesivefractureCounterbodyCounterbodyCounterbody(a)(b)(c)MixedfractureAsperityAsperityAsperityFIGURE3.6Fracturetypesofadhesionjunctionsformingatfriction:(a)adhesivefracture;(b)cohesivefracture;(c)mixedfracture.Tribology41q2006byTaylor&FrancisGroup,LLCPZHh2cotw:(3.10)Hence,thecoefficientoffrictionduetotheploughing(deformation)isrecordedasmdZ2pcotw:(3.11)Asarule,theasperitiesonarealsurfacehaveaslopeontheorderof5–108,i.e.,theangle2wis80–858.Substitutionofthisvalueintothelastformulayieldsadeformation(ploughing)componentofthecoefficientoffrictionwithintherange0.07–0.14.Usually,thesetwocomponents(bothadhesionanddeformation)arejustaddedarithmetically,assumingthattheseareadditive.Inreality,thisisnotquitetruebecausedeformation,whileenlargingthecontactarea,enhancesadhesionandthestrongeradhesionincreasestheseverityofdeformationduringfriction.Never-theless,becausetheareasoverwhichthesetwoprocessesevolvechangeinsignificantly,theassumptionthatthesetwocomponentsareadditiveiscorrect.Moreover,thisisadvantageousforgainingmoreinsightintothenatureoffriction.Notethat,almostwithoutexception,ploughing(Figure3.8a)isaccompaniedbyadhesion(Figure3.8b)and,undercertainconditions,theploughingmayresultinmicrocutting(Figure3.8c),i.e.,additionalworkiscompletedandthefrictionisincreased.Duringdeformation,thereareothermechanismsofenergydissipation.Hence,whenapolymerwithviscoelasticbehaviorslidesagainstahard,roughsurface,dissipationofenergyoccurswithhighhysteresislosses.Thisdeformationcomponentisknownasanelastichysteresisfriction.Theenergymayalsobecarriedawayalongotherchannelsofdissipation.Forinstance,duetonucleationanddevelopmentofmicrocracksontheslidingsurfaceandinthebulkofthematerial,theelasticwavesaregeneratedattheinterfacewithatendencytowardsinfinity.3.1.5FRICTIONASAFUNCTIONOFOPERATINGCONDITIONSDependingupontherubbingmaterials,theroughness,theoperatingconditions(load,slidingvelocity,temperature)andtheenvironment,therelativecontributionofadhesionanddeformationcomponentstofrictioncanvaryoverawiderange.Thisismostnoticeableintheloaddependenceofthefrictioncoefficient(Figure3.9).AccordingtoKragelsciisuchdependencehasaminimumFqqA2A1GrooveGrooveμ=F/W=A1/A2=(2p)ctgqq=85?μ=0.07q=80?μ=0.14FIGURE3.7Deformationalcomponentoffrictionappearingwhenplasticmaterialisploughedwithcone-shapedirregularity.ElectricalContacts:Fundamentals,ApplicationsandTechnology42q2006byTaylor&FrancisGroup,LLCthatisconnecteddirectlywiththetransitionfromelastictoplastic(increasedload)contactandtheassociatedchangeintherelativecontributionsfromthefrictioncomponents.Asdiscussedearlier,therealareaofelasticcontactisproportionaltoloadwithpowerlessthan1,i.e.,theadhesioncomponentandthereforethefrictioncoefficientwilldecreasewithloadduetonegligiblecontributionfromthedeformationcomponent.Whencontactbecomesplastic,therealcontactareaandtheadhesioncomponentbecomeload-independent.Atthesametime,penetrationoftheasperitiesintothecounterbodyincreaseswithloadand,asaresult,sodoesthedeformationcomponent(theploughingterm).Thetotalcoefficientoffrictionincreases.Thistransitionfromadescendingtoanascendingbranchofthecurvedefinestheminimum.Itspositiondependsuponaratioofadhesionanddeformationcomponentsandisshiftedtowardslowervaluesoffrictionwithincreasingma/md.Itshouldbeemphasizedthattheminimuminthisrelationshipisnotverypronounced.Theexperimentalevidenceindicatesthatduetonumerousfactorsexertinganadditionalinfluenceonfriction,alargenumberoftheserelationships,fromadescending(orascending)curvetoaload-independentrelation,exists.Itisinterestingtonotethatsimilarbehaviorisobservedinthedepen-denceofthefrictioncoefficientontheroughness,i.e.,thesmallertheheightofasperities,thegreaterContactload,PCoefficientoffirction,mElasticcontactPlasticcontactFIGURE3.9Thedependenceoffrictioncoefficientonload.PloughingPloughingwithadhesionCutting(a)(b)(c)FIGURE3.8Deformationcomponentoffriction.Tribology43q2006byTaylor&FrancisGroup,LLCistherealcontactareaandthereforetheadhesioncomponent.Ontheotherhand,thehighertheasperitiesandthesmallerthecurvatureradiusattheirtips,thegreaterthedeformationcomponent.Itisinterestingthatthedependenceofthefrictioncoefficientonroughnesshassimilarcharacter:thelowertheasperityheight,thegreatertherealcontactareaandtheadhesioncomponent.Ontheotherhand,thehighertheasperitiesandthesmallertheradiiofpeakcurvature,thegreateristhedeformationcomponent.However,itshouldberememberedthatroughnessitselfvariesduringfriction:averysmoothsurfacebecomesrougher,whereasaveryroughsurfacemaybesmoothed.Thereisaconceptofequilibriumroughnessthatisindependentofinitialroughness;dependingonthewearconditions,itmaybeeitherlessthanorgreaterthantheinitialroughness(Figure3.10).Dependenceoffrictiononslidingvelocityisacomplexissuebecausetheeffectofvelocityisoftenindistinguishablefromthetemperatureeffect.Nonetheless,itisevidentthatwhenslidingisinitiated,reductionofthefrictioncoefficientmaybeobserved(thezerolawoffriction).Alternatively,thefrictionbecomesindependentoftheslidingspeed(thethirdlawoffriction)whenaperfectlyelasticbodyisrubbedundertheconditionswherebythecontacttemperatureremainsalmostunchanged.Inpractice,morecomplicateddependencesmaybeobservedbecauseincreasingtheslidingspeedincreasesthestrainrateandthecontacttemperature.Thesefactorsaffectthemechanicalbehavioroftherubbingmaterialsand,consequently,theadhesionanddeformationcomponentsoffriction.Therefore,becausetheplasticdeformationislocalizedinathinnersurfacelayer,thefrictionforcedecreases.Forimperfectlyelasticmaterials,thefrictionisassociatedwiththespeedandisthereforealsoassociatedwithgenerationofthehysteresislosses.Ingeneral,thespeed-dependentfrictionpassesthroughamaximumthatmaybereducedbycertainconditions,resultinginadescendingtendencyoffriction.Theeffectofcontacttemperaturemustbeemphasizedbecauseincreasingtemperatureweakensthestrengthofadhesivebondsandthecontactbecomesmoreplastic;this,inturn,enlargestherealcontactarea.Thesetoftheseeffectsmaygivewide-rangingeffectsofthefrictiontemperaturedependence.3.1.6THEPRELIMINARYDISPLACEMENTThekineticfrictionisprecededbyaprocesscalledpreliminarydisplacement.Theprocessinvolvesrelativemicrodisplacementsofthecontactingbodies,originallyatrestundernormalloadW,FIGURE3.10Changeinroughnessduringrunning-in:(a)increasingtheroughnesswhentheinitialroughnessislessthantheequilibriumone;(b)decreasingtheroughnesswhentheinitialroughnessisgreaterthantheequilibriumone.ElectricalContacts:Fundamentals,ApplicationsandTechnology44q2006byTaylor&FrancisGroup,LLCbyapplyingandincreasingthetangentialloadFfromzerotosomecriticalvalueFs(staticfrictionforce)responsibleforgrosssliding.Thisphenomenonexertsprimarycontroloverwearandserviceabilityofsuchprecisionengin-eeringdevicesaselectronicswitches,magnetichead–disccontactsincomputer,andsoon.Numerousexperimentshaverevealedthatmicrodisplacementincreasesmonotonicallywithincreasingtangentialforceonlyduringtheinitialstageoftheprocess.Thismicrodisplacementcomprisesreversibleandirreversiblecomponentsandissmallerthanthejunctionsize(thediameterofacontactspot).Underthepreliminarydisplacement,energydissipationoccursjointlywithstoringofthemechanicalenergy.Themechanismofpreliminarydisplacementcanbeconvenientlyexplainedusingasphere-on-flat-contactconfiguration(Figure3.11).LetthespherebeloadedbyaconstantforceW.Thecontactisassumedtobeelastic.ThenormalpressureisaHer
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國運動護(hù)腕表市場調(diào)查研究報告
- 2025至2030年中國商用空調(diào)機(jī)數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國CA粒子增塑劑市場分析及競爭策略研究報告
- 2025━2030年中國電腦智能切片機(jī)項目投資可行性研究報告
- 2025-2035年全球及中國WiFi IP攝像機(jī)行業(yè)市場發(fā)展現(xiàn)狀及發(fā)展前景研究報告
- 2025年技術(shù)檢測與標(biāo)準(zhǔn)認(rèn)證服務(wù)合作協(xié)議書
- 2025年鋁硅靶、鋁硅銅靶材項目建議書
- 拱橋:勁性骨架混凝土拱工程現(xiàn)場質(zhì)量檢驗報告單(三)
- 2025年脂肪醇聚氧乙烯醚項目合作計劃書
- 腎病患者如何預(yù)防感冒
- 城鄉(xiāng)的規(guī)劃法解讀
- 2024年全國鄉(xiāng)村醫(yī)生資格考試專業(yè)基礎(chǔ)知識復(fù)習(xí)題庫及答案(共150題)
- 蘇教版六年級下冊數(shù)學(xué)第三單元第1課《解決問題的策略(1)》課件(公開課)
- EOS-60D-說明手冊課件
- 企業(yè)經(jīng)營管理診斷方案
- 壓瘡上報登記表
- 2021年無人機(jī)駕駛員考試題庫及答案(完整版)
- 城軌車輛常見制動系統(tǒng)-EP09制動系統(tǒng)
- 同位素水文學(xué)研究綜述
- 【公開課】第1章發(fā)酵工程單元復(fù)習(xí)教學(xué)設(shè)計高二下學(xué)期生物人教版選擇性必修3
- 植筋施工施工方案
評論
0/150
提交評論