版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023高二下數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知某幾何體的三視圖如圖所示,則該幾何體的表面積為()A.16 B.(10+)π C.4+(5+)π D.6+(5+)π2.在某項測試中,測量結(jié)果與服從正態(tài)分布,若,則()A.0.4 B.0.8 C.0.6 D.0.213.設(shè)隨機(jī)變量服從正態(tài)分布,若,則()A. B. C. D.與的值有關(guān)4.如圖所示,給出了樣本容量均為7的A、B兩組樣本數(shù)據(jù)的散點圖,已知A組樣本數(shù)據(jù)的相關(guān)系數(shù)為r1,B組數(shù)據(jù)的相關(guān)系數(shù)為r2,則()A.r1=r2 B.r1<r2 C.r1>r2 D.無法判定5.設(shè)集合,.若,則()A. B. C. D.6.魏晉時期數(shù)學(xué)家劉徽首創(chuàng)割圓術(shù),他在《九章算術(shù)》中指出:“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體,而無所失矣”.這是一種無限與有限的轉(zhuǎn)化過程,比如在正數(shù)中的“…”代表無限次重復(fù),設(shè),則可以利用方程求得,類似地可得到正數(shù)=()A.2 B.3 C.4 D.67.甲乙兩隊進(jìn)行排球比賽,已知在一局比賽中甲隊獲勝的概率是23A.2027B.49C.88.若函數(shù)為偶函數(shù),則()A.-1 B.1 C.-1或1 D.09.若的展開式中含有項的系數(shù)為8,則()A.2 B. C. D.10.已知某超市為顧客提供四種結(jié)賬方式:現(xiàn)金、支付寶、微信、銀聯(lián)卡.若顧客甲沒有銀聯(lián)卡,顧客乙只帶了現(xiàn)金,顧客丙、丁用哪種方式結(jié)賬都可以,這四名顧客購物后,恰好用了其中的三種結(jié)賬方式,那么他們結(jié)賬方式的可能情況有()種A.19 B.7 C.26 D.1211.在ΔABC中,∠ACB=π2,AC=BC,現(xiàn)將ΔABC繞BC所在直線旋轉(zhuǎn)至ΔPBC,設(shè)二面角P-BC-A的大小為θ,PB與平面ABC所成角為α,PC與平面PAB所成角為β,若0<θ<π,則(A.α>θ B.β<θ C.0<α≤π412.在正方體中,過對角線的一個平面交于,交于得四邊形,則下列結(jié)論正確的是()A.四邊形一定為菱形B.四邊形在底面內(nèi)的投影不一定是正方形C.四邊形所在平面不可能垂直于平面D.四邊形不可能為梯形二、填空題:本題共4小題,每小題5分,共20分。13.展開式中含有的系數(shù)為________14.已知曲線與軸只有一個交點,則_____.15.求曲線在點處的切線方程是________.16.橢圓的焦點為、,為橢圓上的一點,,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)當(dāng)時,求在上的最大值和最小值:(2)若,恒成立,求a的取值范圍.18.(12分)如圖,在四棱錐中,平面,,∥,,.為的中點,點在上,且.(Ⅰ)求證:平面;(Ⅱ)求二面角的余弦值.19.(12分)如圖直線經(jīng)過圓上的點,OA=OB,CA=CB,圓交直線于點、,其中在線段上,連接、.(1)證明:直線是圓的切線;(2)若,圓的半徑為,求線段的長.20.(12分)設(shè)函數(shù).(1)解不等式;(2)若,使得,求實數(shù)m的取值范圍.21.(12分)在平面直角坐標(biāo)系中,以坐標(biāo)原點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知直線的參數(shù)方程為(為參數(shù)),曲線C的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程和直線的普通方程;(2)設(shè)直線與曲線交于兩點,點,求的值.22.(10分)(1)求的展開式中的常數(shù)項;(2)用,,,,組成一個無重復(fù)數(shù)字的五位數(shù),求滿足條件的五位數(shù)中偶數(shù)的個數(shù).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】分析:由該幾何體的三視圖判斷出組合體各部分的幾何特征,以及各部分的幾何體相關(guān)幾何量的數(shù)據(jù),由面積公式求出該幾何體的表面積.詳解:該幾何體是兩個相同的半圓錐與一個半圓柱的組合體,其表面積為:S=π+4π+4+π=4+(5+)π.故選:C.點睛:本題考查了由三視圖求幾何體的表面積,解題的關(guān)鍵是根據(jù)三視圖判斷幾何體的結(jié)構(gòu)特征及相關(guān)幾何量的數(shù)據(jù).2、B【解析】
根據(jù)已知條件,求出正態(tài)分布曲線的對稱軸為,根據(jù)對稱性可求出的值,進(jìn)而可求【詳解】解:測量結(jié)果與服從正態(tài)分布正態(tài)分布曲線的對稱軸為故選:B.【點睛】本題考查了正態(tài)分布中概率問題的求解.在解此類問題時,結(jié)合正態(tài)分布曲線圖像進(jìn)行求解,其關(guān)鍵是找到曲線的對稱軸.3、A【解析】分析:根據(jù)隨機(jī)變量X服從正態(tài)分布,可知正態(tài)曲線的對稱軸,利用對稱性,即可求得,從而求出即可.詳解:隨機(jī)變量服從正態(tài)分布,正態(tài)曲線的對稱軸是,,而與關(guān)于對稱,由正態(tài)曲線的對稱性得:,故.故選:A.點睛:解決正態(tài)分布問題有三個關(guān)鍵點:(1)對稱軸x=μ;(2)標(biāo)準(zhǔn)差σ;(3)分布區(qū)間.利用對稱性可求指定范圍內(nèi)的概率值;由μ,σ,分布區(qū)間的特征進(jìn)行轉(zhuǎn)化,使分布區(qū)間轉(zhuǎn)化為3σ特殊區(qū)間,從而求出所求概率.注意只有在標(biāo)準(zhǔn)正態(tài)分布下對稱軸才為x=0.4、C【解析】
利用“散點圖越接近某一條直線線性相關(guān)性越強(qiáng),相關(guān)系數(shù)的絕對值越大”判斷即可.【詳解】根據(jù)兩組樣本數(shù)據(jù)的散點圖知,組樣本數(shù)據(jù)幾乎在一條直線上,且成正相關(guān),∴相關(guān)系數(shù)為應(yīng)最接近1,組數(shù)據(jù)分散在一條直線附近,也成正相關(guān),∴相關(guān)系數(shù)為,滿足,即,故選C.【點睛】本題主要考查散點圖與線性相關(guān)的的關(guān)系,屬于中檔題.判斷線性相關(guān)的主要方法:(1)散點圖(越接近直線,相關(guān)性越強(qiáng));(2)相關(guān)系數(shù)(絕對值越大,相關(guān)性越強(qiáng)).5、C【解析】∵集合,,∴是方程的解,即∴∴,故選C6、B【解析】
先閱讀理解題意,再結(jié)合題意類比推理可得:設(shè),解得,得解.【詳解】解:依題意可設(shè),解得,故選:.【點睛】本題考查類比推理,屬于基礎(chǔ)題.7、A【解析】試題分析:“甲隊獲勝”包括兩種情況,一是2:0獲勝,二是2:1獲勝.根據(jù)題意若是甲隊2:0獲勝,則比賽只有2局,其概率為(23)2=49;若是甲隊2:1獲勝,則比賽3局,其中第3考點:相互獨立事件的概率及n次獨立重復(fù)試驗.【方法點晴】本題主要考查了相互獨立事件的概率及n次獨立重復(fù)試驗,屬于中檔題.本題解答的關(guān)鍵是讀懂比賽的規(guī)則,尤其是根據(jù)“采用三局兩勝制比賽,即先勝兩局者獲勝且比賽結(jié)束”把整個比賽所有的可能情況分成兩類,甲隊以2:0獲勝或2:1獲勝,據(jù)此分析整個比賽過程中的每一局的比賽結(jié)果,根據(jù)相互獨立事件的概率乘法公式及n次獨立重復(fù)試驗概率公式求得每種情況的概率再由互斥事件的概率加法公式求得答案.8、C【解析】
由f(x)為偶函數(shù),得,化簡成xlg(x2+1﹣m2x2)=0對恒成立,從而得到x2+1﹣m2x2=1,求出m=±1即可.【詳解】若函數(shù)f(x)為偶函數(shù),∴f(﹣x)=f(x),即;得對恒成立,∴x2+1﹣m2x2=1,∴(1﹣m2)x2=0,∴1﹣m2=0,∴m=±1.故選C.【點睛】本題考查偶函數(shù)的定義,以及對數(shù)的運算性質(zhì),平方差公式,屬于基礎(chǔ)題.9、A【解析】展開式中含有項的系數(shù),,故選A.10、C【解析】
由題意,根據(jù)甲丙丁的支付方式進(jìn)行分類,根據(jù)分類計數(shù)原理即可求出.【詳解】顧客甲沒有銀聯(lián)卡,顧客乙只帶了現(xiàn)金,顧客丙、丁用哪種方式結(jié)賬都可以,
①當(dāng)甲丙丁顧客都不選微信時,則甲有2種選擇,當(dāng)甲選擇現(xiàn)金時,其余2人種,
當(dāng)甲選擇支付寶時,丙丁可以都選銀聯(lián)卡,或者其中一人選擇銀聯(lián)卡,另一人只能選支付寶或現(xiàn)金,故有,故有2+5=7種,
②當(dāng)甲丙丁顧客都不選支付寶時,則甲有2種選擇,當(dāng)甲選擇現(xiàn)金時,其余2人種,
當(dāng)甲選擇微信時,丙丁可以都選銀聯(lián)卡,或者其中一人選擇銀聯(lián)卡,另一人只能選微信或現(xiàn)金,故有,故有2+5=7種,
③當(dāng)甲丙丁顧客都不選銀聯(lián)卡時,若有人使用現(xiàn)金,則,若沒有人使用現(xiàn)金,則有種,故有6+6=12種,根據(jù)分步計數(shù)原理可得共有7+7+6+6=26種,
故選C.【點睛】本題考查了分步計數(shù)原理和分類計數(shù)原理,考查了轉(zhuǎn)化思想,屬于難題.11、C【解析】
由題意畫出圖形,由線面角的概念可得α的范圍,得到C正確,取特殊情況說明A,B,D錯誤.【詳解】如圖,ΔABC為等腰直角三角形,AC=BC,將ΔABC繞BC所在直線旋轉(zhuǎn)至ΔPBC,則PC⊥BC,可得BC⊥平面PAC,∴二面角P-BC-A的大小θ=∠ACP,PB是平面ABC的一條斜線,則PC與平面ABC垂直時,PB與平面ABC所成角最大,則α的范圍為(0,π4],故此時α<θ,故A錯誤;當(dāng)PC與平面ABC垂直時,三棱錐C-PAB滿足CA⊥CB,CA⊥CP,CB⊥CP,CA=CB=CP,則PA=PB=AB,設(shè)AC=BC=1,則PA=PB=AB=2,C在平面PAB的射影為ΔPAB求得OP=63,即PC與平面PAB所成角β的余弦值cosβ=63當(dāng)θ無限接近0時,β無限接近π4,β>θ,故B綜上,正確的選項是C.故選:C.【點睛】本題考查空間角及其求法,考查空間想象能力與思維能力,屬難題.12、D【解析】對于A,當(dāng)與兩條棱上的交點都是中點時,四邊形為菱形,故A錯誤;對于B,四邊形在底面內(nèi)的投影一定是正方形,故B錯誤;對于C,當(dāng)兩條棱上的交點是中點時,四邊形垂直于平面,故C錯誤;對于D,四邊形一定為平行四邊形,故D正確.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、135【解析】
根據(jù)二項式定理確定含有的項數(shù),進(jìn)而得系數(shù)【詳解】令得含有的系數(shù)為故答案為:135【點睛】本題考查二項式定理及其應(yīng)用,考查基本分析求解能力,屬基礎(chǔ)題.14、5【解析】
由曲線y=x2+4x+m﹣1與x軸只有一個交點△=0可求m的值.【詳解】因為與x軸只有一個交點,故,所以.故答案為5【點睛】本題考查由△判定二次函數(shù)與x軸交點個數(shù)問題,屬于基礎(chǔ)題.15、【解析】因為,所以,則曲線在點處的切線的斜率為,即所求切線方程為,即.16、8【解析】分析:根據(jù)橢圓的方程,得到,由知為直角三角形,在中利用勾股定理得|.再根據(jù)橢圓的定義得到,兩式聯(lián)解可得,由此即可得到Rt△F1PF2的面積為S=1.詳解:∵橢圓方程為,且,可得
∵,∴…①
根據(jù)橢圓的定義,得|,
∴…②
②減去①,得,可得
即答案為:8點睛:本題給出橢圓的焦點三角形為直角三角形,求焦點三角形的面積.著重考查了橢圓的標(biāo)準(zhǔn)方程與簡單幾何性質(zhì)等知識,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)最大值是,最小值為1.(2)【解析】
(1)記的導(dǎo)函數(shù)的導(dǎo)數(shù)為,分析可得,結(jié)合,可得在R上是增函數(shù),再,可得在上是增函數(shù),即得解;(2)分,,三種情況分析的單調(diào)性,繼而分析的最小值,即得解.【詳解】(1)為表述簡單起見,記的導(dǎo)函數(shù)的導(dǎo)數(shù)為.當(dāng)時,,則.,所以在R上是增函數(shù).又,所以當(dāng)時,,所以在上是增函數(shù).故在上的最大值是,最小值為.(2),.①若,即時,,所以在R上是增函數(shù).又,所以當(dāng)時,,所以在上是增函數(shù).所以當(dāng)時,.可見,當(dāng),.又是偶函數(shù),所以恒成立.所以符合題意.②若,即時,,所以在R上是減函數(shù).所以當(dāng)時,,所以在上是減函數(shù).所以當(dāng)時,.這與恒成立矛盾,所以不符合題意.③當(dāng)時,.由,得.由的圖象,知存在唯一的,使得.當(dāng)時,.所以在上是減函數(shù).所以當(dāng)時,,所以在上是減函數(shù).所以當(dāng)時,.這與恒成立矛盾,所以不符合題意.綜上,a的取值范圍是.【點睛】本題考查了函數(shù)與導(dǎo)數(shù)綜合,考查了二次求導(dǎo),含參函數(shù)的最值,不等式恒成立問題,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,分類討論,數(shù)學(xué)運算的能力,屬于較難題.18、(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)結(jié)合線面垂直的判定定理即可證明;(Ⅱ)采用建系法,以為原點建立空間直角坐標(biāo)系,分別求出平面和平面的法向量,再由向量夾角的余弦公式求解即可;【詳解】(Ⅰ)由于平面,平面,則,由題意可知,且,由線面垂直的判定定理可得平面.(Ⅱ)以點為坐標(biāo)原點,平面內(nèi)與垂直的直線為軸,,方向為軸,軸建立如圖所示的空間直角坐標(biāo)系,易知:,,,,由可得點的坐標(biāo)為,由可得,設(shè)平面的法向量為:,則,據(jù)此可得平面的一個法向量為:,很明顯平面的一個法向量為,,二面角的平面角為銳角,故二面角的余弦值為.【點睛】本題考查線面垂直的證明,向量法求解二面角的平面角大小,屬于中檔題19、(1)詳見解析;(2)5.【解析】試題分析:(1)若要證明AB為圓O的切線,則應(yīng)連接OC,證明OC⊥AB,根據(jù)題中條件,OA=OB得三角形OAB為等腰三角形,再由CA=CB,即C為AB中點,因此OC⊥AB,又C在圓O上,所以AB為圓O的切線。本問考查圓的切線的證明,一是證明垂直,二是說明點在圓上,就可以證明是圓的切線了。(2)直線是圓的切線,.又,可以證明,可以得出對應(yīng)線段成比例,,又根據(jù),故.設(shè),則,又,故,即.從而可以求出x的值,即BD的長,OA=OB=OD+DB,就可以求出OB的長度。試題解析:(1)連結(jié).又是圓的半徑,是圓的切線.(2)直線是圓的切線,.又,,則有,又,故.設(shè),則,又,故,即.解得,即..考點:1.圓的相關(guān)證明;2.三角形相似20、(1);(2).【解析】
1把用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 單位管理制度呈現(xiàn)合集員工管理篇
- 單位管理制度呈現(xiàn)大合集人員管理篇
- 工作轉(zhuǎn)正自我鑒定4篇
- 3D打印在計算機(jī)維修中的創(chuàng)新應(yīng)用
- 《用色彩畫心情》課件
- 第3單元+中國特色社會主義道路
- 物流行業(yè)顧問工作總結(jié)
- 乒乓球比賽的作文匯編10篇
- 輸液室護(hù)士的職責(zé)概述
- 游樂園前臺服務(wù)感悟
- 2021年安全工程師《建筑施工安全》真題及答案解析
- 2024時事政治考試題庫附參考答案(黃金題型)
- 2024年新“國九條”及配套政策要點解讀分析報告
- 2024-2029年中國大健康行業(yè)市場發(fā)展現(xiàn)狀分析及發(fā)展趨勢與投資戰(zhàn)略規(guī)劃報告
- 超星爾雅學(xué)習(xí)通《藝術(shù)哲學(xué)美是如何誕生的(同濟(jì)大學(xué))》2024章節(jié)測試答案
- 全國醫(yī)院數(shù)量統(tǒng)計
- (2024年)長歌行漢樂府古詩PPT語文課件
- GB/T 43674-2024加氫站通用要求
- 倉庫班長年終總結(jié)及工作計劃
- 部編人教版二年級勞動教育上冊期末試卷(帶答案)
- 肛門手術(shù)的鎮(zhèn)痛研課件
評論
0/150
提交評論