下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
中學(xué)??嫉臄?shù)學(xué)學(xué)問點(diǎn):函數(shù)的整理
中學(xué)??嫉臄?shù)學(xué)學(xué)問點(diǎn):函數(shù)的整理
導(dǎo)道:數(shù)學(xué)是學(xué)問的工具,亦是其它學(xué)問工具的泉源。全部探討依次和度量的科學(xué)均和數(shù)學(xué)有關(guān)。下面是為大家打算的,初中數(shù)學(xué)學(xué)問點(diǎn),歡迎閱讀,更多相關(guān)的學(xué)問,請關(guān)注CNFLA學(xué)習(xí)網(wǎng)!空間兩條直線只有三種位置關(guān)系:平行、相交、異面
冪函數(shù)的性質(zhì)
定義:
形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。
定義域和值域:
當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同狀況如下:假如a為隨意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的全部實(shí)數(shù);假如a為負(fù)數(shù),則x確定不能為0,不過這時(shí)函數(shù)的定義域還必需根[據(jù)q的奇偶性來確定,即假如同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的全部實(shí)數(shù);假如同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的全部實(shí)數(shù)。當(dāng)x為不同的數(shù)值時(shí),冪函數(shù)的值域的不同狀況如下:在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域
性質(zhì):
對于a的取值為非零有理數(shù),有必要分成幾種狀況來探討各自的特性:
首先我們知道假如a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),假如q是奇數(shù),函數(shù)的定義域是R,假如q是偶數(shù),函數(shù)的定義域是[0,+)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),明顯x0,函數(shù)的定義域是(-,0)(0,+).因此可以看到x所受到的限制來源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負(fù)數(shù),那么我們就可以知道:
解除了為0與負(fù)數(shù)兩種可能,即對于x0,則a可以是隨意實(shí)數(shù);
解除了為0這種可能,即對于x0和x0的.全部實(shí)數(shù),q不能是偶數(shù);
解除了為負(fù)數(shù)這種可能,即對于x為大于且等于0的全部實(shí)數(shù),a就不能是負(fù)數(shù)??偨Y(jié)起來,就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同狀況如下:
指數(shù)函數(shù)、函數(shù)奇偶性
指數(shù)函數(shù)的一般形式為,從上面我們對于冪函數(shù)的探討就可以知道,要想使得x能夠取整個(gè)實(shí)數(shù)集合為定義域,則只有使得
如圖所示為a的不同大小影響函數(shù)圖形的狀況。
可以看到:
(1)指數(shù)函數(shù)的定義域?yàn)槿繉?shí)數(shù)的集合,這里的前提是a大于0,對于a不大于0的狀況,則必定使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。
(2)指數(shù)函數(shù)的值域?yàn)榇笥?的實(shí)數(shù)集合。
(3)函數(shù)圖形都是下凹的。
(4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。
(5)可以看到一個(gè)明顯的規(guī)律,就是當(dāng)a從0趨向于無窮大的過程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負(fù)半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個(gè)過渡位置。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 22924-2024復(fù)合肥料中縮二脲含量的測定
- 石油天然氣工程內(nèi)部承包協(xié)議示范文本
- 商業(yè)合作合同樣本
- 廠房租賃合同的樣式參考
- 汽車質(zhì)押擔(dān)保借款合同書
- 旅游產(chǎn)品銷售代理協(xié)議
- 香港與境外股市投資服務(wù)協(xié)議書
- 共同研發(fā)軟件合同書樣本
- 2024年設(shè)備借條范本正規(guī)
- 2022年學(xué)校意識形態(tài)自查報(bào)告6篇
- 消防工程消防器材供應(yīng)方案
- 《國家心力衰竭指南2023》解讀
- 火電廠信息化建設(shè)規(guī)劃方案
- 10kV供配電系統(tǒng)電氣設(shè)備改造 投標(biāo)方案(技術(shù)方案)
- 南昌中科體檢報(bào)告查詢
- 微觀經(jīng)濟(jì)學(xué)課件
- 北京市商業(yè)地產(chǎn)發(fā)展現(xiàn)狀
- 海洋的形成與演變
- 銷售到營銷的轉(zhuǎn)變
- 2024年高考生物一輪復(fù)習(xí)特異性免疫課件
- 無人機(jī)現(xiàn)場服務(wù)方案
評論
0/150
提交評論