2.3.4平面與平面垂直的性質(zhì)定理_第1頁
2.3.4平面與平面垂直的性質(zhì)定理_第2頁
2.3.4平面與平面垂直的性質(zhì)定理_第3頁
2.3.4平面與平面垂直的性質(zhì)定理_第4頁
2.3.4平面與平面垂直的性質(zhì)定理_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2.3.4平面與平面垂直的性質(zhì)復(fù)習(xí)回顧:(1)利用定義[作出二面角的平面角,證明平面角是直角]AB線面垂直面面垂直線線垂直面面垂直的判定(2)利用判定定理[線面垂直面面垂直]αβEF思考

如圖,長方體中,α⊥β,(1)α里的直線都和β垂直嗎?(2)什么情況下α里的直線和β垂直?與AD垂直不一定平面與平面垂直的性質(zhì)定理符號表示:DCAB

兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直.∵,∴AB⊥BE.又由題意知AB⊥CD,且BECD=B垂足為B.∴AB⊥則∠ABE就是二面角的平面角.證明:在平面內(nèi)作BE⊥CD,αβABDCE證明:垂足為B,那么AB⊥β思考1

設(shè)平面⊥平面,點P在平面內(nèi),過點P作平面的垂線a,直線a與平面具有什么位置關(guān)系?aa直線a在平面內(nèi)βαPβαPαβAbalB垂直例1.S為三角形ABC所在平面外一點,SA⊥平面ABC,平面SAB⊥平面SBC。求證:AB⊥BC。SCBAD證明:過A點作AD⊥SB于D點.∵平面SAB⊥平面SBC,∴AD⊥平面SBC,∴AD⊥BC.又∵SA⊥平面ABC,∴SA⊥BC.AD∩SA=A∴BC⊥平面SAB.∴BC⊥AB.練習(xí)1:如圖,以正方形ABCD的對角線AC為折痕,使△ADC和△ABC折成相垂直的兩個面,求BD與平面ABC所成的角。ABCDDABCOO折成2.如圖,平面AED⊥平面ABCD,△AED是等邊三角形,四邊形ABCD是矩形,(1)求證:EA⊥CDMDECAB(2)若AD=1,AB=,求EC與平面ABCD所成的角。

如圖,正方形ADEF與梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,M為CE的中點.(1)求證:BM∥平面ADEF;(2)求證:平面BDE⊥平面BEC.【證明】(1)取DE中點N,連接MN,AN.在△EDC中,M,N分別為EC,ED的中點,所以MN∥CD,且MN=CD.由已知AB∥CD,AB=CD,所以MN∥AB,且MN=AB,所以四邊形ABMN為平行四邊形.所以BM∥AN.又因為AN平面ADEF,且BM平面ADEF,所以BM∥平面ADEF.[總結(jié)提煉]☆已知面面垂直易找面的垂線,且在某一個平面內(nèi)☆解題過程中應(yīng)注意充分領(lǐng)悟、應(yīng)用☆證明面面垂直要從尋找面的垂線入手☆理解面面垂直的判定與性質(zhì)都要依賴面面垂直的定義☆

定義面面垂直是在建立在二面角的定義的基礎(chǔ)上的線面垂直面面垂直線線垂直面面垂直線面垂直線線垂直αβaAB線線垂直線面垂直線線平行面面平行面面垂直垂直、平行關(guān)系小結(jié)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論