版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
河南南陽市2023年高三第二學(xué)期期末檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.正項(xiàng)等比數(shù)列中的、是函數(shù)的極值點(diǎn),則()A. B.1 C. D.22.體育教師指導(dǎo)4個學(xué)生訓(xùn)練轉(zhuǎn)身動作,預(yù)備時,4個學(xué)生全部面朝正南方向站成一排.訓(xùn)練時,每次都讓3個學(xué)生“向后轉(zhuǎn)”,若4個學(xué)生全部轉(zhuǎn)到面朝正北方向,則至少需要“向后轉(zhuǎn)”的次數(shù)是()A.3 B.4 C.5 D.63.設(shè)拋物線的焦點(diǎn)為F,拋物線C與圓交于M,N兩點(diǎn),若,則的面積為()A. B. C. D.4.函數(shù)在上的最大值和最小值分別為()A.,-2 B.,-9 C.-2,-9 D.2,-25.設(shè),為非零向量,則“存在正數(shù),使得”是“”的()A.既不充分也不必要條件 B.必要不充分條件C.充分必要條件 D.充分不必要條件6.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點(diǎn)E、F且EF=,則下列結(jié)論中錯誤的是()A.AC⊥BE B.EF平面ABCDC.三棱錐A-BEF的體積為定值 D.異面直線AE,BF所成的角為定值7.網(wǎng)格紙上小正方形邊長為1單位長度,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為()A.1 B. C.3 D.48.已知圓錐的高為3,底面半徑為,若該圓錐的頂點(diǎn)與底面的圓周都在同一個球面上,則這個球的體積與圓錐的體積的比值為()A. B. C. D.9.已知正四棱錐的側(cè)棱長與底面邊長都相等,是的中點(diǎn),則所成的角的余弦值為()A. B. C. D.10.為了加強(qiáng)“精準(zhǔn)扶貧”,實(shí)現(xiàn)偉大復(fù)興的“中國夢”,某大學(xué)派遣甲、乙、丙、丁、戊五位同學(xué)參加三個貧困縣的調(diào)研工作,每個縣至少去1人,且甲、乙兩人約定去同一個貧困縣,則不同的派遣方案共有()A.24 B.36 C.48 D.6411.的展開式中有理項(xiàng)有()A.項(xiàng) B.項(xiàng) C.項(xiàng) D.項(xiàng)12.已知函數(shù)滿足,當(dāng)時,,則()A.或 B.或C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.若關(guān)于的不等式在上恒成立,則的最大值為__________.14.若函數(shù)的圖像上存在點(diǎn),滿足約束條件,則實(shí)數(shù)的最大值為__________.15.如圖,在中,已知,為邊的中點(diǎn).若,垂足為,則的值為__.16.的展開式中項(xiàng)的系數(shù)為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,、、的對應(yīng)邊分別為、、,已知,,.(1)求;(2)設(shè)為中點(diǎn),求的長.18.(12分)在直角坐標(biāo)系xOy中,直線的參數(shù)方程為(t為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為.(1)寫出圓C的直角坐標(biāo)方程;(2)設(shè)直線l與圓C交于A,B兩點(diǎn),,求的值.19.(12分)在中,角,,所對的邊分別為,,,已知,,角為銳角,的面積為.(1)求角的大??;(2)求的值.20.(12分)已知直線與拋物線交于兩點(diǎn).(1)當(dāng)點(diǎn)的橫坐標(biāo)之和為4時,求直線的斜率;(2)已知點(diǎn),直線過點(diǎn),記直線的斜率分別為,當(dāng)取最大值時,求直線的方程.21.(12分)已知數(shù)列{an}滿足條件,且an+2=(﹣1)n(an﹣1)+2an+1,n∈N*.(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;(Ⅱ)設(shè)bn=,Sn為數(shù)列{bn}的前n項(xiàng)和,求證:Sn.22.(10分)在平面直角坐標(biāo)系中,橢圓:的右焦點(diǎn)為(,為常數(shù)),離心率等于0.8,過焦點(diǎn)、傾斜角為的直線交橢圓于、兩點(diǎn).⑴求橢圓的標(biāo)準(zhǔn)方程;⑵若時,,求實(shí)數(shù);⑶試問的值是否與的大小無關(guān),并證明你的結(jié)論.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)可導(dǎo)函數(shù)在極值點(diǎn)處的導(dǎo)數(shù)值為,得出,再由等比數(shù)列的性質(zhì)可得.【詳解】解:依題意、是函數(shù)的極值點(diǎn),也就是的兩個根∴又是正項(xiàng)等比數(shù)列,所以∴.故選:B【點(diǎn)睛】本題主要考查了等比數(shù)列下標(biāo)和性質(zhì)以應(yīng)用,屬于中檔題.2、B【解析】
通過列舉法,列舉出同學(xué)的朝向,然后即可求出需要向后轉(zhuǎn)的次數(shù).【詳解】“正面朝南”“正面朝北”分別用“∧”“∨”表示,利用列舉法,可得下表,原始狀態(tài)第1次“向后轉(zhuǎn)”第2次“向后轉(zhuǎn)”第3次“向后轉(zhuǎn)”第4次“向后轉(zhuǎn)”∧∧∧∧∧∨∨∨∨∨∧∧∧∧∧∨∨∨∨∨可知需要的次數(shù)為4次.故選:B.【點(diǎn)睛】本題考查的是求最小推理次數(shù),一般這類題型構(gòu)造較為巧妙,可通過列舉的方法直觀感受,屬于基礎(chǔ)題.3、B【解析】
由圓過原點(diǎn),知中有一點(diǎn)與原點(diǎn)重合,作出圖形,由,,得,從而直線傾斜角為,寫出點(diǎn)坐標(biāo),代入拋物線方程求出參數(shù),可得點(diǎn)坐標(biāo),從而得三角形面積.【詳解】由題意圓過原點(diǎn),所以原點(diǎn)是圓與拋物線的一個交點(diǎn),不妨設(shè)為,如圖,由于,,∴,∴,,∴點(diǎn)坐標(biāo)為,代入拋物線方程得,,∴,.故選:B.【點(diǎn)睛】本題考查拋物線與圓相交問題,解題關(guān)鍵是發(fā)現(xiàn)原點(diǎn)是其中一個交點(diǎn),從而是等腰直角三角形,于是可得點(diǎn)坐標(biāo),問題可解,如果僅從方程組角度研究兩曲線交點(diǎn),恐怕難度會大大增加,甚至沒法求解.4、B【解析】
由函數(shù)解析式中含絕對值,所以去絕對值并畫出函數(shù)圖象,結(jié)合圖象即可求得在上的最大值和最小值.【詳解】依題意,,作出函數(shù)的圖象如下所示;由函數(shù)圖像可知,當(dāng)時,有最大值,當(dāng)時,有最小值.故選:B.【點(diǎn)睛】本題考查了絕對值函數(shù)圖象的畫法,由函數(shù)圖象求函數(shù)的最值,屬于基礎(chǔ)題.5、D【解析】
充分性中,由向量數(shù)乘的幾何意義得,再由數(shù)量積運(yùn)算即可說明成立;必要性中,由數(shù)量積運(yùn)算可得,不一定有正數(shù),使得,所以不成立,即可得答案.【詳解】充分性:若存在正數(shù),使得,則,,得證;必要性:若,則,不一定有正數(shù),使得,故不成立;所以是充分不必要條件故選:D【點(diǎn)睛】本題考查平面向量數(shù)量積的運(yùn)算,向量數(shù)乘的幾何意義,還考查了充分必要條件的判定,屬于簡單題.6、D【解析】
A.通過線面的垂直關(guān)系可證真假;B.根據(jù)線面平行可證真假;C.根據(jù)三棱錐的體積計(jì)算的公式可證真假;D.根據(jù)列舉特殊情況可證真假.【詳解】A.因?yàn)?,所以平面,又因?yàn)槠矫?,所以,故正確;B.因?yàn)?,所以,且平面,平面,所以平面,故正確;C.因?yàn)闉槎ㄖ担狡矫娴木嚯x為,所以為定值,故正確;D.當(dāng),,取為,如下圖所示:因?yàn)?,所以異面直線所成角為,且,當(dāng),,取為,如下圖所示:因?yàn)椋运倪呅问瞧叫兴倪呅?,所以,所以異面直線所成角為,且,由此可知:異面直線所成角不是定值,故錯誤.故選:D.【點(diǎn)睛】本題考查立體幾何中的綜合應(yīng)用,涉及到線面垂直與線面平行的證明、異面直線所成角以及三棱錐體積的計(jì)算,難度較難.注意求解異面直線所成角時,將直線平移至同一平面內(nèi).7、A【解析】
采用數(shù)形結(jié)合,根據(jù)三視圖可知該幾何體為三棱錐,然后根據(jù)錐體體積公式,可得結(jié)果.【詳解】根據(jù)三視圖可知:該幾何體為三棱錐如圖該幾何體為三棱錐,長度如上圖所以所以所以故選:A【點(diǎn)睛】本題考查根據(jù)三視圖求直觀圖的體積,熟悉常見圖形的三視圖:比如圓柱,圓錐,球,三棱錐等;對本題可以利用長方體,根據(jù)三視圖刪掉沒有的點(diǎn)與線,屬中檔題.8、B【解析】
計(jì)算求半徑為,再計(jì)算球體積和圓錐體積,計(jì)算得到答案.【詳解】如圖所示:設(shè)球半徑為,則,解得.故求體積為:,圓錐的體積:,故.故選:.【點(diǎn)睛】本題考查了圓錐,球體積,圓錐的外接球問題,意在考查學(xué)生的計(jì)算能力和空間想象能力.9、C【解析】試題分析:設(shè)的交點(diǎn)為,連接,則為所成的角或其補(bǔ)角;設(shè)正四棱錐的棱長為,則,所以,故C為正確答案.考點(diǎn):異面直線所成的角.10、B【解析】
根據(jù)題意,有兩種分配方案,一是,二是,然后各自全排列,再求和.【詳解】當(dāng)按照進(jìn)行分配時,則有種不同的方案;當(dāng)按照進(jìn)行分配,則有種不同的方案.故共有36種不同的派遣方案,故選:B.【點(diǎn)睛】本題考查排列組合、數(shù)學(xué)文化,還考查數(shù)學(xué)建模能力以及分類討論思想,屬于中檔題.11、B【解析】
由二項(xiàng)展開式定理求出通項(xiàng),求出的指數(shù)為整數(shù)時的個數(shù),即可求解.【詳解】,,當(dāng),,,時,為有理項(xiàng),共項(xiàng).故選:B.【點(diǎn)睛】本題考查二項(xiàng)展開式項(xiàng)的特征,熟練掌握二項(xiàng)展開式的通項(xiàng)公式是解題的關(guān)鍵,屬于基礎(chǔ)題.12、C【解析】
簡單判斷可知函數(shù)關(guān)于對稱,然后根據(jù)函數(shù)的單調(diào)性,并計(jì)算,結(jié)合對稱性,可得結(jié)果.【詳解】由,可知函數(shù)關(guān)于對稱當(dāng)時,,可知在單調(diào)遞增則又函數(shù)關(guān)于對稱,所以且在單調(diào)遞減,所以或,故或所以或故選:C【點(diǎn)睛】本題考查函數(shù)的對稱性以及單調(diào)性求解不等式,抽象函數(shù)給出式子的意義,比如:,,考驗(yàn)分析能力,屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
分類討論,時不合題意;時求導(dǎo),求出函數(shù)的單調(diào)區(qū)間,得到在上的最小值,利用不等式恒成立轉(zhuǎn)化為函數(shù)最小值,化簡得,構(gòu)造放縮函數(shù)對自變量再研究,可解,【詳解】令;當(dāng)時,,不合題意;當(dāng)時,,令,得或,所以在區(qū)間和上單調(diào)遞減.因?yàn)?,且在區(qū)間上單調(diào)遞增,所以在處取極小值,即最小值為.若,,則,即.當(dāng)時,,當(dāng)時,則.設(shè),則.當(dāng)時,;當(dāng)時,,所以在上單調(diào)遞增;在上單調(diào)遞減,所以,即,所以的最大值為.故答案為:【點(diǎn)睛】本題考查不等式恒成立問題.不等式恒成立問題的求解思路:已知不等式(為實(shí)參數(shù))對任意的恒成立,求參數(shù)的取值范圍.利用導(dǎo)數(shù)解決此類問題可以運(yùn)用分離參數(shù)法;如果無法分離參數(shù),可以考慮對參數(shù)或自變量進(jìn)行分類討論求解,如果是二次不等式恒成立的問題,可以考慮二次項(xiàng)系數(shù)與判別式的方法(,或,)求解.14、1【解析】由題知x>0,且滿足約束條件的圖象為由圖可知當(dāng)與交于點(diǎn)B(2,1),當(dāng)直線過B點(diǎn)時,m取得最大值為1.點(diǎn)睛:線性規(guī)劃的實(shí)質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合的思想.需要注意的是:一、準(zhǔn)確無誤地作出可行域;二、畫標(biāo)準(zhǔn)函數(shù)所對應(yīng)的直線時,要注意與約束條件中的直線的斜率進(jìn)行比較,避免出錯;三、一般情況下,目標(biāo)函數(shù)的最大或最小會在可行域的端點(diǎn)或邊界上取得.15、【解析】
,由余弦定理,得,得,,,所以,所以.點(diǎn)睛:本題考查平面向量的綜合應(yīng)用.本題中存在垂直關(guān)系,所以在線性表示的過程中充分利用垂直關(guān)系,得到,所以本題轉(zhuǎn)化為求長度,利用余弦定理和面積公式求解即可.16、40【解析】
根據(jù)二項(xiàng)定理展開式,求得r的值,進(jìn)而求得系數(shù).【詳解】根據(jù)二項(xiàng)定理展開式的通項(xiàng)式得所以,解得所以系數(shù)【點(diǎn)睛】本題考查了二項(xiàng)式定理的簡單應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)直接根據(jù)特殊角的三角函數(shù)值求出,結(jié)合正弦定理求出;(2)結(jié)合第一問的結(jié)論以及余弦定理即可求解.【詳解】解:(1)∵,且,∴,由正弦定理,∴,∵∴銳角,∴(2)∵,∴∴∴在中,由余弦定理得∴【點(diǎn)睛】本題主要考查了正弦定理和余弦定理的運(yùn)用.考查了學(xué)生對三角函數(shù)基礎(chǔ)知識的綜合運(yùn)用.18、(1);(2)20【解析】
(1)利用即可得到答案;(2)利用直線參數(shù)方程的幾何意義,.【詳解】解:(1)由,得圓C的直角坐標(biāo)方程為,即.(2)將直線l的參數(shù)方程代入圓C的直角坐標(biāo)方程,得,即,設(shè)兩交點(diǎn)A,B所對應(yīng)的參數(shù)分別為,,從而,則.【點(diǎn)睛】本題考查了極坐標(biāo)方程與普通方程的互化、直線參數(shù)方程的幾何意義等知識,考查學(xué)生的計(jì)算能力,是一道容易題.19、(1);(2)7.【解析】分析:(1)由三角形面積公式和已知條件求得sinA的值,進(jìn)而求得A;(2)利用余弦定理公式和(1)中求得的A求得a.詳解:(1)∵,∴,∵為銳角,∴;(2)由余弦定理得:.點(diǎn)睛:本題主要考查正弦定理邊角互化及余弦定理的應(yīng)用與特殊角的三角函數(shù),屬于簡單題.對余弦定理一定要熟記兩種形式:(1);(2),同時還要熟練掌握運(yùn)用兩種形式的條件.另外,在解與三角形、三角函數(shù)有關(guān)的問題時,還需要記住等特殊角的三角函數(shù)值,以便在解題中直接應(yīng)用.20、(1)(2)【解析】
(1)設(shè),根據(jù)直線的斜率公式即可求解;(2)設(shè)直線的方程為,聯(lián)立直線與拋物線方程,由韋達(dá)定理得,,結(jié)合直線的斜率公式得到,換元后討論的符號,求最值可求解.【詳解】(1)設(shè),因?yàn)?,即直線的斜率為1.(2)顯然直線的斜率存在,設(shè)直線的方程為.聯(lián)立方程組,可得則,令,則則當(dāng)時,;當(dāng)且僅當(dāng),即時,解得時,取“=”號,當(dāng)時,;當(dāng)時,綜上所述,當(dāng)時,取得最大值,此時直線的方程是.【點(diǎn)睛】本題主要考查了直線的斜率公式,直線與拋物線的位置關(guān)系,換元法,均值不等式,考查了運(yùn)算能力,屬于難題.21、(Ⅰ)(Ⅱ)證明見解析【解析】
(Ⅰ)由an+2=(﹣1)n(an﹣1)+2an+1,對分奇偶討論,即可得;(Ⅱ)由(Ⅰ)得,用錯位相減法求出,運(yùn)用分析法證明即可.【詳解】(Ⅰ),當(dāng)為奇數(shù)時,,又由,得,當(dāng)為偶數(shù)時,,又由a2=3,得,;(Ⅱ)由(1)得,則①②①-②可得:,,若證明Sn,則需要證明,又,即證明,即證,又顯然成立,故Sn得證.【點(diǎn)睛】本題主要考查了由遞推公式求通項(xiàng)公式,錯位相減法求前項(xiàng)和,分析法證明不等式,考查了分類討論的思想,考查了學(xué)生的運(yùn)算求解與邏輯推理能力.22、(1)(2)(3)為定值【解析】試題分析:(1)利用待定系數(shù)法可得,橢圓方程為;(2)我們要知道=的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 福建省南平市武夷山第二中學(xué)2021年高三物理上學(xué)期期末試卷含解析
- 個人車位買賣協(xié)議書模板
- 2024廣告裝飾工程合作合同典范版B版
- 1假期有收獲 說課稿-2024-2025學(xué)年道德與法治二年級上冊統(tǒng)編版
- 汽車設(shè)計(jì)的創(chuàng)新之路
- 科技驅(qū)動的環(huán)保革新
- 外出經(jīng)營合同(2篇)
- 基礎(chǔ)設(shè)施合作投資協(xié)議書(2篇)
- 2024年網(wǎng)絡(luò)平臺蔬菜水果銷售合同3篇
- 15-1《諫太宗十思疏》說課稿 2023-2024學(xué)年統(tǒng)編版高中語文必修下冊
- 數(shù)學(xué)分析知識點(diǎn)的總結(jié)
- 產(chǎn)科操作技術(shù)規(guī)范范本
- 2023年重癥醫(yī)學(xué)科護(hù)理工作計(jì)劃
- 年會抽獎券可編輯模板
- 感染性疾病標(biāo)志物及快速診斷課件(PPT 134頁)
- YC∕T 273-2014 卷煙包裝設(shè)計(jì)要求
- 2022年煤礦地面消防應(yīng)急預(yù)案范文
- 高中化學(xué)必修二第三章第一節(jié)認(rèn)識有機(jī)化合物課件
- 水上拋石護(hù)坡施工方案
- 4PL的供應(yīng)鏈整合及其對區(qū)域發(fā)展的借鑒意義
- 物料提升機(jī)基礎(chǔ)方案
評論
0/150
提交評論