浙江省杭州市開發(fā)區(qū)重點名校2021-2022學年中考數學押題卷含解析_第1頁
浙江省杭州市開發(fā)區(qū)重點名校2021-2022學年中考數學押題卷含解析_第2頁
浙江省杭州市開發(fā)區(qū)重點名校2021-2022學年中考數學押題卷含解析_第3頁
浙江省杭州市開發(fā)區(qū)重點名校2021-2022學年中考數學押題卷含解析_第4頁
浙江省杭州市開發(fā)區(qū)重點名校2021-2022學年中考數學押題卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知△ABC,△DCE,△FEG,△HGI是4個全等的等腰三角形,底邊BC,CE,EG,GI在同一直線上,且AB=2,BC=1.連接AI,交FG于點Q,則QI=()A.1 B. C. D.2.如圖,在?ABCD中,AB=2,BC=1.以點C為圓心,適當長為半徑畫弧,交BC于點P,交CD于點Q,再分別以點P,Q為圓心,大于PQ的長為半徑畫弧,兩弧相交于點N,射線CN交BA的延長線于點E,則AE的長是()A. B.1 C. D.3.為豐富學生課外活動,某校積極開展社團活動,開設的體育社團有:A:籃球,B:排球,C:足球,D:羽毛球,E:乒乓球.學生可根據自己的愛好選擇一項,李老師對八年級同學選擇體育社團情況進行調查統(tǒng)計,制成了兩幅不完整的統(tǒng)計圖(如圖),則以下結論不正確的是()A.選科目E的有5人B.選科目A的扇形圓心角是120°C.選科目D的人數占體育社團人數的D.據此估計全校1000名八年級同學,選擇科目B的有140人4.計算(﹣3)﹣(﹣6)的結果等于()A.3B.﹣3C.9D.185.如果一元二次方程2x2+3x+m=0有兩個相等的實數根,那么實數m的取值為()A.m> B.m C.m= D.m=6.如圖,AB∥CD,AD與BC相交于點O,若∠A=50°10′,∠COD=100°,則∠C等于()A.30°10′ B.29°10′ C.29°50′ D.50°10′7.如圖是由三個相同的小正方體組成的幾何體,則該幾何體的左視圖是()A. B. C. D.8.已知二次函數y=3(x﹣1)2+k的圖象上有三點A(,y1),B(2,y2),C(﹣,y3),則y1、y2、y3的大小關系為()A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y19.關于x的方程12x=kA.0或1210.若分式有意義,則x的取值范圍是A.x>1 B.x<1 C.x≠1 D.x≠0二、填空題(本大題共6個小題,每小題3分,共18分)11.肥皂泡的泡壁厚度大約是,用科學記數法表示為_______.12.在反比例函數圖象的每一支上,y隨x的增大而______用“增大”或“減小”填空.13.已知是二元一次方程組的解,則m+3n的立方根為__.14.計算:(π﹣3)0+(﹣)﹣1=_____.15.如圖所示,P為∠α的邊OA上一點,且P點的坐標為(3,4),則sinα+cosα=_____.16.若一元二次方程x2﹣2x﹣m=0無實數根,則一次函數y=(m+1)x+m﹣1的圖象不經過第_____象限.三、解答題(共8題,共72分)17.(8分)問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點D,則D為BC的中點,∠BAD=∠BAC=60°,于是==遷移應用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點在同一條直線上,連接BD.(1)求證:△ADB≌△AEC;(2)若AD=2,BD=3,請計算線段CD的長;拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內作射線BM,作點C關于BM的對稱點E,連接AE并延長交BM于點F,連接CE,CF.(3)證明:△CEF是等邊三角形;(4)若AE=4,CE=1,求BF的長.18.(8分)如圖,AB為⊙O的直徑,點C,D在⊙O上,且點C是的中點,過點C作AD的垂線EF交直線AD于點E.(1)求證:EF是⊙O的切線;(2)連接BC,若AB=5,BC=3,求線段AE的長.19.(8分)在一個不透明的盒子中裝有大小和形狀相同的3個紅球和2個白球,把它們充分攪勻.“從中任意抽取1個球不是紅球就是白球”是事件,“從中任意抽取1個球是黑球”是事件;從中任意抽取1個球恰好是紅球的概率是;學校決定在甲、乙兩名同學中選取一名作為學生代表發(fā)言,制定如下規(guī)則:從盒子中任取兩個球,若兩球同色,則選甲;若兩球異色,則選乙.你認為這個規(guī)則公平嗎?請用列表法或畫樹狀圖法加以說明.20.(8分)如圖,是的直徑,是圓上一點,弦于點,且.過點作的切線,過點作的平行線,兩直線交于點,的延長線交的延長線于點.(1)求證:與相切;(2)連接,求的值.21.(8分)某養(yǎng)雞場有2500只雞準備對外出售.從中隨機抽取了一部分雞,根據它們的質量(單位:),繪制出如下的統(tǒng)計圖①和圖②.請根據相關信息,解答下列問題:(Ⅰ)圖①中的值為;(Ⅱ)求統(tǒng)計的這組數據的平均數、眾數和中位數;(Ⅲ)根據樣本數據,估計這2500只雞中,質量為的約有多少只?22.(10分)剪紙是中國傳統(tǒng)的民間藝術,它畫面精美,風格獨特,深受大家喜愛,現有三張不透明的卡片,其中兩張卡片的正面圖案為“金魚”,另外一張卡片的正面圖案為“蝴蝶”,卡片除正面剪紙圖案不同外,其余均相同.將這三張卡片背面向上洗勻從中隨機抽取一張,記錄圖案后放回,重新洗勻后再從中隨機抽取一張.請用畫樹狀圖(或列表)的方法,求抽出的兩張卡片上的圖案都是“金魚”的概率.(圖案為“金魚”的兩張卡片分別記為A1、A2,圖案為“蝴蝶”的卡片記為B)23.(12分)已知:如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于點F,交BC于點G,交AB的延長線于點E,且AE=AC.求證:BG=FG;若AD=DC=2,求AB的長.24.△ABC內接于⊙O,AC為⊙O的直徑,∠A=60°,點D在AC上,連接BD作等邊三角形BDE,連接OE.如圖1,求證:OE=AD;如圖2,連接CE,求證:∠OCE=∠ABD;如圖3,在(2)的條件下,延長EO交⊙O于點G,在OG上取點F,使OF=2OE,延長BD到點M使BD=DM,連接MF,若tan∠BMF=,OD=3,求線段CE的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】解:∵△ABC、△DCE、△FEG是三個全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=2BC=2,∴===,∴=.∵∠ABI=∠ABC,∴△ABI∽△CBA,∴=.∵AB=AC,∴AI=BI=2.∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故選D.點睛:本題主要考查了平行線分線段定理,以及三角形相似的判定,正確理解AB∥CD∥EF,AC∥DE∥FG是解題的關鍵.2、B【解析】分析:只要證明BE=BC即可解決問題;詳解:∵由題意可知CF是∠BCD的平分線,∴∠BCE=∠DCE.∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=1,∵AB=2,∴AE=BE-AB=1,故選B.點睛:本題考查的是作圖-基本作圖,熟知角平分線的作法是解答此題的關鍵.3、B【解析】

A選項先求出調查的學生人數,再求選科目E的人數來判定,B選項先求出A科目人數,再利用×360°判定即可,C選項中由D的人數及總人數即可判定,D選項利用總人數乘以樣本中B人數所占比例即可判定.【詳解】解:調查的學生人數為:12÷24%=50(人),選科目E的人數為:50×10%=5(人),故A選項正確,選科目A的人數為50﹣(7+12+10+5)=16人,選科目A的扇形圓心角是×360°=115.2°,故B選項錯誤,選科目D的人數為10,總人數為50人,所以選科目D的人數占體育社團人數的,故C選項正確,估計全校1000名八年級同學,選擇科目B的有1000×=140人,故D選項正確;故選B.【點睛】本題主要考查了條形統(tǒng)計圖及扇形統(tǒng)計圖,解題的關鍵是讀懂統(tǒng)計圖,從統(tǒng)計圖中找到準確信息.4、A【解析】原式=?3+6=3,故選A5、C【解析】試題解析:∵一元二次方程2x2+3x+m=0有兩個相等的實數根,∴△=32-4×2m=9-8m=0,解得:m=.故選C.6、C【解析】

根據平行線性質求出∠D,根據三角形的內角和定理得出∠C=180°-∠D-∠COD,代入求出即可.【詳解】∵AB∥CD,∴∠D=∠A=50°10′,∵∠COD=100°,∴∠C=180°-∠D-∠COD=29°50′.故選C.【點睛】本題考查了三角形的內角和定理和平行線的性質的應用,關鍵是求出∠D的度數和得出∠C=180°-∠D-∠COD.應該掌握的是三角形的內角和為180°.7、C【解析】分析:細心觀察圖中幾何體中正方體擺放的位置,根據左視圖是從左面看到的圖形判定則可.詳解:從左邊看豎直疊放2個正方形.故選:C.點睛:此題考查了幾何體的三種視圖和學生的空間想象能力,左視圖是從物體左面看所得到的圖形,解答時學生易將三種視圖混淆而錯誤的選其它選項.8、D【解析】試題分析:根據二次函數的解析式y(tǒng)=3(x-1)2+k,可知函數的開口向上,對稱軸為x=1,根據函數圖像的對稱性,可得這三點的函數值的大小為y3>y2>y1.故選D點睛:此題主要考查了二次函數的圖像與性質,解題時先根據頂點式求出開口方向,和對稱軸,然后根據函數的增減性比較即可,這是中考??碱},難度有點偏大,注意結合圖形判斷驗證.9、A【解析】方程兩邊同乘2x(x+3),得x+3=2kx,(2k-1)x=3,∵方程無解,∴當整式方程無解時,2k-1=0,k=12當分式方程無解時,①x=0時,k無解,②x=-3時,k=0,∴k=0或12故選A.10、C【解析】

分式分母不為0,所以,解得.故選:C.二、填空題(本大題共6個小題,每小題3分,共18分)11、7×10-1.【解析】

絕對值小于1的正數也可以利用科學記數法表示,一般形式為a×10-n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的0的個數所決定.【詳解】0.0007=7×10-1.故答案為:7×10-1.【點睛】本題考查用科學記數法表示較小的數,一般形式為a×10-n,其中1≤|a|<10,n為由原數左邊起第一個不為零的數字前面的0的個數所決定.12、減小【解析】

根據反比例函數的性質,依據比例系數k的符號即可確定.【詳解】∵k=2>0,∴y隨x的增大而減?。蚀鸢甘牵簻p?。军c睛】本題考查了反比例函數的性質,反比例函數y=(k≠0)的圖象是雙曲線,當k>0,雙曲線的兩支分別位于第一、第三象限,在每一象限內y隨x的增大而減??;(3)當k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內y隨x的增大而增大.13、3【解析】

把x與y的值代入方程組求出m與n的值,即可確定出所求.【詳解】解:把代入方程組得:相加得:m+3n=27,則27的立方根為3,故答案為3【點睛】此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程左右兩邊相等的未知數的值.14、-1【解析】

先計算0指數冪和負指數冪,再相減.【詳解】(π﹣3)0+(﹣)﹣1,=1﹣3,=﹣1,故答案是:﹣1.【點睛】考查了0指數冪和負指數冪,解題關鍵是運用任意數的0次冪為1,a-1=.15、【解析】

根據正弦和余弦的概念求解.【詳解】解:∵P是∠α的邊OA上一點,且P點坐標為(3,4),∴PB=4,OB=3,OP==5,故sinα==,cosα=,∴sinα+cosα=,故答案為【點睛】此題考查的是銳角三角函數的定義,解答此類題目的關鍵是找出所求角的對應邊.16、一【解析】∵一元二次方程x2-2x-m=0無實數根,

∴△=4+4m<0,解得m<-1,

∴m+1<0,m-1<0,

∴一次函數y=(m+1)x+m-1的圖象經過二三四象限,不經過第一象限.

故答案是:一.三、解答題(共8題,共72分)17、(1)見解析;(2)CD=;(3)見解析;(4)【解析】試題分析:遷移應用:(1)如圖2中,只要證明∠DAB=∠CAE,即可根據SAS解決問題;

(2)結論:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD?cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解決問題;

拓展延伸:(3)如圖3中,作BH⊥AE于H,連接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四點共圓,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等邊三角形;

(4)由AE=4,EC=EF=1,推出AH=HE=2,FH=3,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解決問題.試題解析:遷移應用:(1)證明:如圖2,

∵∠BAC=∠DAE=120°,

∴∠DAB=∠CAE,

在△DAE和△EAC中,

DA=EA,∠DAB=∠EAC,AB=AC,

∴△DAB≌△EAC,

(2)結論:CD=AD+BD.

理由:如圖2-1中,作AH⊥CD于H.

∵△DAB≌△EAC,

∴BD=CE,

在Rt△ADH中,DH=AD?cos30°=AD,

∵AD=AE,AH⊥DE,

∴DH=HE,

∵CD=DE+EC=2DH+BD=AD+BD=.

拓展延伸:(3)如圖3中,作BH⊥AE于H,連接BE.

∵四邊形ABCD是菱形,∠ABC=120°,

∴△ABD,△BDC是等邊三角形,

∴BA=BD=BC,

∵E、C關于BM對稱,

∴BC=BE=BD=BA,FE=FC,

∴A、D、E、C四點共圓,

∴∠ADC=∠AEC=120°,

∴∠FEC=60°,

∴△EFC是等邊三角形,

(4)∵AE=4,EC=EF=1,

∴AH=HE=2,FH=3,

在Rt△BHF中,∵∠BFH=30°,

∴=cos30°,

∴BF=.18、(1)證明見解析(2)【解析】

(1)連接OC,根據等腰三角形的性質、平行線的判定得到OC∥AE,得到OC⊥EF,根據切線的判定定理證明;(2)根據勾股定理求出AC,證明△AEC∽△ACB,根據相似三角形的性質列出比例式,計算即可.【詳解】(1)證明:連接OC,∵OA=OC,∴∠OCA=∠BAC,∵點C是的中點,∴∠EAC=∠BAC,∴∠EAC=∠OCA,∴OC∥AE,∵AE⊥EF,∴OC⊥EF,即EF是⊙O的切線;(2)解:∵AB為⊙O的直徑,∴∠BCA=90°,∴AC==4,∵∠EAC=∠BAC,∠AEC=∠ACB=90°,∴△AEC∽△ACB,∴,∴AE=.【點睛】本題考查的是切線的判定、圓周角定理以及相似三角形的判定和性質,掌握切線的判定定理、直徑所對的圓周角是直角是解題的關鍵.19、(1)必然,不可能;(2);(3)此游戲不公平.【解析】

(1)直接利用必然事件以及怒不可能事件的定義分別分析得出答案;(2)直接利用概率公式求出答案;(3)首先畫出樹狀圖,進而利用概率公式求出答案.【詳解】(1)“從中任意抽取1個球不是紅球就是白球”是必然事件,“從中任意抽取1個球是黑球”是不可能事件;故答案為必然,不可能;(2)從中任意抽取1個球恰好是紅球的概率是:;故答案為;(3)如圖所示:,由樹狀圖可得:一共有20種可能,兩球同色的有8種情況,故選擇甲的概率為:;則選擇乙的概率為:,故此游戲不公平.【點睛】此題主要考查了游戲公平性,正確列出樹狀圖是解題關鍵.20、(1)見解析;(2)【解析】

(1)連接,,易證為等邊三角形,可得,由等腰三角形的性質及角的和差關系可得∠1=30°,由于可得∠DCG=∠CDA=∠60°,即可求出∠OCG=90°,可得與相切;(2)作于點.設,則,.根據兩組對邊互相平行可證明四邊形為平行四邊形,由可證四邊形為菱形,由(1)得,從而可求出、的值,從而可知的長度,利用銳角三角函數的定義即可求出的值.【詳解】(1)連接,.∵是的直徑,弦于點,∴,.∵,∴.∴為等邊三角形.∴,∠DAE=∠EAC=30°,∵OA=OC,∴∠OAC=∠OCA=30°,∴∠1=∠DCA-∠OCA=30°,∵,∴∠DCG=∠CDA=∠60°,∴∠OCG=∠DCG+∠1=60°+30°=90°,∴.∴與相切.(2)連接EF,作于點.設,則,.∵與相切,∴.又∵,∴.又∵,∴四邊形為平行四邊形.∵,∴四邊形為菱形.∴,.由(1)得,∴,.∴.∵在中,,∴.【點睛】本題考查圓的綜合問題,涉及切線的判定與性質,菱形的判定與性質,等邊三角形的性質及銳角三角函數,考查學生綜合運用知識的能力,熟練掌握相關性質是解題關鍵.21、(Ⅰ)28.(Ⅱ)平均數是1.52.眾數為1.8.中位數為1.5.(Ⅲ)200只.【解析】分析:(Ⅰ)用整體1減去所有已知的百分比即可求出m的值;(Ⅱ)根據眾數、中位數、加權平均數的定義計算即可;(Ⅲ)用總數乘以樣本中2.0kg的雞所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)觀察條形統(tǒng)計圖,∵,∴這組數據的平均數是1.52.∵在這組數據中,1.8出現了16次,出現的次數最多,∴這組數據的眾數為1.8.∵將這組數據按從小到大的順序排列,其中處于中間的兩個數都是1.5,有,∴這組數據的中位數為1.5.(Ⅲ)∵在所抽取的樣本中,質量為的數量占.∴由樣本數據,估計這2500只雞中,質量為的數量約占.有.∴這2500只雞中,質量為的約有200只.點睛:此題主要考查了平均數、眾數、中位數的統(tǒng)計意義以及利用樣本估計總體等知識.找中位數要把數據按從小到大的順序排列,位于最中間的一個數或兩個數的平均數為中位數;眾數是一組數據中出現次數最多的數據,注意眾數可以不止一個;平均數是指在一組數據中所有數據之和再除以數據的個數.22、【解析】【分析】列表得出所有等可能結果,然后根據概率公式列式計算即可得解【詳解】列表如下:A1A2BA1(A1,A1)(A2,A1)(B,A1)A2(A1,A2)(A2,A2)(B,A2)B(A1,B)(A2,B)(B,B)由表可知,共有9種等可能結果,其中抽出的兩張卡片上的圖案都是“金魚”的4種結果,所以抽出的兩張卡片上的圖案都是“金魚”的概率為.【點睛】本題考查了列表法和樹狀圖法,用到的知識點為:概率=所求情況數與總情況數之比.23、(1)證明見解析;(2)AB=【解析】

(1)證明:∵,DE⊥AC于點F,∴∠ABC=∠AFE.∵AC=AE,∠EAF=∠CAB,∴△ABC≌△AFE∴AB=AF.連接AG,∵AG=AG,AB=AF∴Rt△ABG≌Rt△AFG∴BG=FG(2)解:∵AD=DC,DF⊥AC∴∴∠E=30°∴∠FAD=∠E=30°∴AB=AF=24、(1)證明見解析;(2)證明見解析;(3)CE=.【解析】

(1)連接OB,證明△ABD≌△OBE,即可證出OE=AD.(2)連接OB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論