福建省廈門市鳳南中學(xué)2023年中考數(shù)學(xué)模擬預(yù)測題含解析_第1頁
福建省廈門市鳳南中學(xué)2023年中考數(shù)學(xué)模擬預(yù)測題含解析_第2頁
福建省廈門市鳳南中學(xué)2023年中考數(shù)學(xué)模擬預(yù)測題含解析_第3頁
福建省廈門市鳳南中學(xué)2023年中考數(shù)學(xué)模擬預(yù)測題含解析_第4頁
福建省廈門市鳳南中學(xué)2023年中考數(shù)學(xué)模擬預(yù)測題含解析_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.下列各數(shù):1.414,,﹣,0,其中是無理數(shù)的為()A.1.414 B. C.﹣ D.02.如圖,一束平行太陽光線FA、GB照射到正五邊形ABCDE上,∠ABG=46°,則∠FAE的度數(shù)是()A.26°. B.44°. C.46°. D.72°3.如果,那么的值為()A.1 B.2 C. D.4.在一組數(shù)據(jù):1,2,4,5中加入一個(gè)新數(shù)3之后,新數(shù)據(jù)與原數(shù)據(jù)相比,下列說法正確的是()A.中位數(shù)不變,方差不變 B.中位數(shù)變大,方差不變C.中位數(shù)變小,方差變小 D.中位數(shù)不變,方差變小5.若二次函數(shù)y=ax2+bx+c的x與y的部分對應(yīng)值如下表:x﹣2﹣1012y830﹣10則拋物線的頂點(diǎn)坐標(biāo)是()A.(﹣1,3) B.(0,0) C.(1,﹣1) D.(2,0)6.方程x2﹣3x=0的根是()A.x=0 B.x=3 C., D.,7.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④2c–3b<0;⑤a+b>n(an+b)(n≠1),其中正確的結(jié)論有()A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)8.化簡的結(jié)果為()A.﹣1 B.1 C. D.9.下列運(yùn)算正確的是()A.a(chǎn)2?a3=a6B.a(chǎn)3+a2=a5C.(a2)4=a8D.a(chǎn)3﹣a2=a10.如圖,A、B、C、D是⊙O上的四點(diǎn),BD為⊙O的直徑,若四邊形ABCO是平行四邊形,則∠ADB的大小為()A.30° B.45° C.60° D.75°11.已知a<1,點(diǎn)A(x1,﹣2)、B(x2,4)、C(x3,5)為反比例函數(shù)圖象上的三點(diǎn),則下列結(jié)論正確的是()A.x1>x2>x3 B.x1>x3>x2 C.x3>x1>x2 D.x2>x3>x112.如圖,四邊形ABCD內(nèi)接于⊙O,點(diǎn)I是△ABC的內(nèi)心,∠AIC=124°,點(diǎn)E在AD的延長線上,則∠CDE的度數(shù)為()A.56° B.62° C.68° D.78°二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.設(shè)△ABC的面積為1,如圖①,將邊BC、AC分別2等分,BE1、AD1相交于點(diǎn)O,△AOB的面積記為S1;如圖②將邊BC、AC分別3等分,BE1、AD1相交于點(diǎn)O,△AOB的面積記為S2;…,依此類推,則Sn可表示為________.(用含n的代數(shù)式表示,其中n為正整數(shù))14.計(jì)算:3﹣1﹣30=_____.15.以下兩題任選一題作答:(1).下圖是某商場一樓二樓之間的手扶電梯示意圖,其中AB、CD分別表示一樓、二樓地面的水平,∠ABC=150°,BC的長是8m,則乘電梯次點(diǎn)B到點(diǎn)C上升的高度h是_____m.(2).一個(gè)多邊形的每一個(gè)內(nèi)角都是與它相鄰?fù)饨堑?倍,則多邊形是_____邊形.16.菱形ABCD中,∠A=60°,AB=9,點(diǎn)P是菱形ABCD內(nèi)一點(diǎn),PB=PD=3,則AP的長為_____.17.計(jì)算:2﹣1+=_____.18.已知y與x的函數(shù)滿足下列條件:①它的圖象經(jīng)過(1,1)點(diǎn);②當(dāng)時(shí),y隨x的增大而減小.寫出一個(gè)符合條件的函數(shù):__________.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知△ABC中,∠ACB=90°,D是邊AB的中點(diǎn),P是邊AC上一動(dòng)點(diǎn),BP與CD相交于點(diǎn)E.(1)如果BC=6,AC=8,且P為AC的中點(diǎn),求線段BE的長;(2)聯(lián)結(jié)PD,如果PD⊥AB,且CE=2,ED=3,求cosA的值;(3)聯(lián)結(jié)PD,如果BP2=2CD2,且CE=2,ED=3,求線段PD的長.20.(6分)如圖,在矩形ABCD中,AB=3,AD=4,P沿射線BD運(yùn)動(dòng),連接AP,將線段AP繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°得線段PQ.(1)當(dāng)點(diǎn)Q落到AD上時(shí),∠PAB=____°,PA=_____,長為_____;(2)當(dāng)AP⊥BD時(shí),記此時(shí)點(diǎn)P為P0,點(diǎn)Q為Q0,移動(dòng)點(diǎn)P的位置,求∠QQ0D的大??;(3)在點(diǎn)P運(yùn)動(dòng)中,當(dāng)以點(diǎn)Q為圓心,BP為半徑的圓與直線BD相切時(shí),求BP的長度;(4)點(diǎn)P在線段BD上,由B向D運(yùn)動(dòng)過程(包含B、D兩點(diǎn))中,求CQ的取值范圍,直接寫出結(jié)果.21.(6分)如圖,在方格紙上建立平面直角坐標(biāo)系,每個(gè)小正方形的邊長為1.(1)在圖1中畫出△AOB關(guān)于x軸對稱的△A1OB1,并寫出點(diǎn)A1,B1的坐標(biāo);(2)在圖2中畫出將△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°的△A2OB2,并求出線段OB掃過的面積.22.(8分)已知:如圖,拋物線y=ax2+bx+c與坐標(biāo)軸分別交于點(diǎn)A(0,6),B(6,0),C(﹣2,0),點(diǎn)P是線段AB上方拋物線上的一個(gè)動(dòng)點(diǎn).(1)求拋物線的解析式;(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAB的面積有最大值?(3)過點(diǎn)P作x軸的垂線,交線段AB于點(diǎn)D,再過點(diǎn)P做PE∥x軸交拋物線于點(diǎn)E,連結(jié)DE,請問是否存在點(diǎn)P使△PDE為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.23.(8分)(2017江蘇省常州市)為了解某校學(xué)生的課余興趣愛好情況,某調(diào)查小組設(shè)計(jì)了“閱讀”、“打球”、“書法”和“其他”四個(gè)選項(xiàng),用隨機(jī)抽樣的方法調(diào)查了該校部分學(xué)生的課余興趣愛好情況(每個(gè)學(xué)生必須選一項(xiàng)且只能選一項(xiàng)),并根據(jù)調(diào)查結(jié)果繪制了如下統(tǒng)計(jì)圖:根據(jù)統(tǒng)計(jì)圖所提供的信息,解答下列問題:(1)本次抽樣調(diào)查中的樣本容量是;(2)補(bǔ)全條形統(tǒng)計(jì)圖;(3)該校共有2000名學(xué)生,請根據(jù)統(tǒng)計(jì)結(jié)果估計(jì)該校課余興趣愛好為“打球”的學(xué)生人數(shù).24.(10分)中華文明,源遠(yuǎn)流長;中華漢字,寓意深廣,為了傳承優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校3000名學(xué)生參加的“漢字聽寫”大賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績均不低于50分.為了更好地了解本次大賽的成績分布情況,隨機(jī)抽取了其中200名學(xué)生的成績(成績x取整數(shù),總分100分)作為樣本進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:成績x/分頻數(shù)頻率50≤x<60100.0560≤x<70300.1570≤x<8040n80≤x<90m0.3590≤x≤100500.25請根據(jù)所給信息,解答下列問題:m=,n=;請補(bǔ)全頻數(shù)分布直方圖;若成績在90分以上(包括90分)的為“優(yōu)”等,則該校參加這次比賽的3000名學(xué)生中成績“優(yōu)”等約有多少人?25.(10分)如圖,拋物線y=x2﹣2mx(m>0)與x軸的另一個(gè)交點(diǎn)為A,過P(1,﹣m)作PM⊥x軸于點(diǎn)M,交拋物線于點(diǎn)B,點(diǎn)B關(guān)于拋物線對稱軸的對稱點(diǎn)為C(1)若m=2,求點(diǎn)A和點(diǎn)C的坐標(biāo);(2)令m>1,連接CA,若△ACP為直角三角形,求m的值;(3)在坐標(biāo)軸上是否存在點(diǎn)E,使得△PEC是以P為直角頂點(diǎn)的等腰直角三角形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請說明理由.26.(12分)如圖1,一枚質(zhì)地均勻的正六面體骰子的六個(gè)面分別標(biāo)有數(shù)字1,2,3,4,5,6,如圖2,正方形ABCD的頂點(diǎn)處各有一個(gè)圈,跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子朝上的那面上的數(shù)字是幾,就沿正方形的邊按順時(shí)針方向連續(xù)跳幾個(gè)邊長。如:若從圈A起跳,第一次擲得3,就順時(shí)針連續(xù)跳3個(gè)邊長,落在圈D;若第二次擲得2,就從圈D開始順時(shí)針連續(xù)跳2個(gè)邊長,落得圈B;…設(shè)游戲者從圈A起跳.小賢隨機(jī)擲一次骰子,求落回到圈A的概率P1.小南隨機(jī)擲兩次骰子,用列表法求最后落回到圈A的概率P2,并指出他與小賢落回到圈A的可能性一樣嗎?27.(12分)解方程組:.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】試題分析:根據(jù)無理數(shù)的定義可得是無理數(shù).故答案選B.考點(diǎn):無理數(shù)的定義.2、A【解析】

先根據(jù)正五邊形的性質(zhì)求出∠EAB的度數(shù),再由平行線的性質(zhì)即可得出結(jié)論.【詳解】解:∵圖中是正五邊形.∴∠EAB=108°.∵太陽光線互相平行,∠ABG=46°,∴∠FAE=180°﹣∠ABG﹣∠EAB=180°﹣46°﹣108°=26°.故選A.【點(diǎn)睛】此題考查平行線的性質(zhì),多邊形內(nèi)角與外角,解題關(guān)鍵在于求出∠EAB.3、D【解析】

先對原分式進(jìn)行化簡,再尋找化簡結(jié)果與已知之間的關(guān)系即可得出答案.【詳解】故選:D.【點(diǎn)睛】本題主要考查分式的化簡求值,掌握分式的基本性質(zhì)是解題的關(guān)鍵.4、D【解析】

根據(jù)中位數(shù)和方差的定義分別計(jì)算出原數(shù)據(jù)和新數(shù)據(jù)的中位數(shù)和方差,從而做出判斷.【詳解】∵原數(shù)據(jù)的中位數(shù)是2+42=3,平均數(shù)為1+2+4+54=3,

∴方差為14×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=52;

∵新數(shù)據(jù)的中位數(shù)為3,平均數(shù)為1+2+3+【點(diǎn)睛】本題考查了中位數(shù)和方差,解題的關(guān)鍵是掌握中位數(shù)和方差的定義.5、C【解析】分析:由表中所給數(shù)據(jù),可求得二次函數(shù)解析式,則可求得其頂點(diǎn)坐標(biāo).詳解:當(dāng)或時(shí),,當(dāng)時(shí),,,解得,二次函數(shù)解析式為,拋物線的頂點(diǎn)坐標(biāo)為,故選C.點(diǎn)睛:本題主要考查二次函數(shù)的性質(zhì),利用條件求得二次函數(shù)的解析式是解題的關(guān)鍵.6、D【解析】

先將方程左邊提公因式x,解方程即可得答案.【詳解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故選:D.【點(diǎn)睛】本題考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接開平方法、公式法、因式分解法等,熟練掌握并靈活運(yùn)用適當(dāng)?shù)姆椒ㄊ墙忸}關(guān)鍵.7、B【解析】

①觀察圖象可知a<0,b>0,c>0,由此即可判定①;②當(dāng)x=﹣1時(shí),y=a﹣b+c由此可判定②;③由對稱知,當(dāng)x=2時(shí),函數(shù)值大于0,即y=4a+2b+c>0,由此可判定③;④當(dāng)x=3時(shí)函數(shù)值小于0,即y=9a+3b+c<0,且x=﹣=1,可得a=﹣,代入y=9a+3b+c<0即可判定④;⑤當(dāng)x=1時(shí),y的值最大.此時(shí),y=a+b+c,當(dāng)x=n時(shí),y=an2+bn+c,由此即可判定⑤.【詳解】①由圖象可知:a<0,b>0,c>0,abc<0,故此選項(xiàng)錯(cuò)誤;②當(dāng)x=﹣1時(shí),y=a﹣b+c<0,即b>a+c,故此選項(xiàng)錯(cuò)誤;③由對稱知,當(dāng)x=2時(shí),函數(shù)值大于0,即y=4a+2b+c>0,故此選項(xiàng)正確;④當(dāng)x=3時(shí)函數(shù)值小于0,y=9a+3b+c<0,且x=﹣=1即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此選項(xiàng)正確;⑤當(dāng)x=1時(shí),y的值最大.此時(shí),y=a+b+c,而當(dāng)x=n時(shí),y=an2+bn+c,所以a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故此選項(xiàng)正確.∴③④⑤正確.故選B.【點(diǎn)睛】本題主要考查了拋物線的圖象與二次函數(shù)系數(shù)之間的關(guān)系,熟知拋物線的圖象與二次函數(shù)系數(shù)之間的關(guān)系是解決本題的關(guān)鍵.8、B【解析】

先把分式進(jìn)行通分,把異分母分式化為同分母分式,再把分子相加,即可求出答案.【詳解】解:.故選B.9、C【解析】

根據(jù)同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加;合并同類項(xiàng)的法則:把同類項(xiàng)的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變;冪的乘方法則:底數(shù)不變,指數(shù)相乘進(jìn)行計(jì)算即可.【詳解】A、a2?a3=a5,故原題計(jì)算錯(cuò)誤;B、a3和a2不是同類項(xiàng),不能合并,故原題計(jì)算錯(cuò)誤;C、(a2)4=a8,故原題計(jì)算正確;D、a3和a2不是同類項(xiàng),不能合并,故原題計(jì)算錯(cuò)誤;故選:C.【點(diǎn)睛】此題主要考查了冪的乘方、同底數(shù)冪的乘法,以及合并同類項(xiàng),關(guān)鍵是掌握計(jì)算法則.10、A【解析】

解:∵四邊形ABCO是平行四邊形,且OA=OC,∴四邊形ABCO是菱形,∴AB=OA=OB,∴△OAB是等邊三角形,∴∠AOB=60°,∵BD是⊙O的直徑,∴點(diǎn)B、D、O在同一直線上,∴∠ADB=∠AOB=30°故選A.11、B【解析】

根據(jù)的圖象上的三點(diǎn),把三點(diǎn)代入可以得到x1=﹣,x1=,x3=,在根據(jù)a的大小即可解題【詳解】解:∵點(diǎn)A(x1,﹣1)、B(x1,4)、C(x3,5)為反比例函數(shù)圖象上的三點(diǎn),∴x1=﹣,x1=,x3=,∵a<1,∴a﹣1<0,∴x1>x3>x1.故選B.【點(diǎn)睛】此題主要考查一次函數(shù)圖象與系數(shù)的關(guān)系,解題關(guān)鍵在于把三點(diǎn)代入,在根據(jù)a的大小來判斷12、C【解析】分析:由點(diǎn)I是△ABC的內(nèi)心知∠BAC=2∠IAC、∠ACB=2∠ICA,從而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圓內(nèi)接四邊形的外角等于內(nèi)對角可得答案.詳解:∵點(diǎn)I是△ABC的內(nèi)心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四邊形ABCD內(nèi)接于⊙O,∴∠CDE=∠B=68°,故選C.點(diǎn)睛:本題主要考查三角形的內(nèi)切圓與內(nèi)心,解題的關(guān)鍵是掌握三角形的內(nèi)心的性質(zhì)及圓內(nèi)接四邊形的性質(zhì).二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、【解析】試題解析:如圖,連接D1E1,設(shè)AD1、BE1交于點(diǎn)M,∵AE1:AC=1:(n+1),∴S△ABE1:S△ABC=1:(n+1),∴S△ABE1=,∵,∴,∴S△ABM:S△ABE1=(n+1):(2n+1),∴S△ABM:=(n+1):(2n+1),∴Sn=.故答案為.14、﹣.【解析】

原式利用零指數(shù)冪、負(fù)整數(shù)指數(shù)冪法則計(jì)算即可求出值.【詳解】原式=﹣1=﹣.故答案是:﹣.【點(diǎn)睛】考查了實(shí)數(shù)的運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.15、48【解析】

(1)先求出斜邊的坡角為30°,再利用含30°的直角三角形即可求解;(2)設(shè)這個(gè)多邊形邊上為n,則內(nèi)角和為(n-2)×180°,外角度數(shù)為故可列出方程求解.【詳解】(1)∵∠ABC=150°,∴斜面BC的坡角為30°,∴h==4m(2)設(shè)這個(gè)多邊形邊上為n,則內(nèi)角和為(n-2)×180°,外角度數(shù)為依題意得解得n=8故為八邊形.【點(diǎn)睛】此題主要考查含30°的直角三角形與多邊形的內(nèi)角和計(jì)算,解題的關(guān)鍵是熟知含30°的直角三角形的性質(zhì)與多邊形的內(nèi)角和公式.16、3或6【解析】

分成P在OA上和P在OC上兩種情況進(jìn)行討論,根據(jù)△ABD是等邊三角形,即可求得OA的長度,在直角△OBP中利用勾股定理求得OP的長,則AP即可求得.【詳解】設(shè)AC和BE相交于點(diǎn)O.當(dāng)P在OA上時(shí),∵AB=AD,∠A=60°,∴△ABD是等邊三角形,∴BD=AB=9,OB=OD=BD=.則AO=.在直角△OBP中,OP=.則AP=OA-OP-;當(dāng)P在OC上時(shí),AP=OA+OP=.故答案是:3或6.【點(diǎn)睛】本題考查了菱形的性質(zhì),注意到P在AC上,應(yīng)分兩種情況進(jìn)行討論是解題的關(guān)鍵.17、【解析】根據(jù)負(fù)整指數(shù)冪的性質(zhì)和二次根式的性質(zhì),可知=.故答案為.18、y=-x+2(答案不唯一)【解析】①圖象經(jīng)過(1,1)點(diǎn);②當(dāng)x>1時(shí).y隨x的增大而減小,這個(gè)函數(shù)解析式為y=-x+2,故答案為y=-x+2(答案不唯一).三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)(2)(3).【解析】

(1)由勾股定理求出BP的長,D是邊AB的中點(diǎn),P為AC的中點(diǎn),所以點(diǎn)E是△ABC的重心,然后求得BE的長.(2)過點(diǎn)B作BF∥CA交CD的延長線于點(diǎn)F,所以,然后可求得EF=8,所以,所以,因?yàn)镻D⊥AB,D是邊AB的中點(diǎn),在△ABC中可求得cosA的值.(3)由,∠PBD=∠ABP,證得△PBD∽△ABP,再證明△DPE∽△DCP得到,PD可求.【詳解】解:(1)∵P為AC的中點(diǎn),AC=8,∴CP=4,∵∠ACB=90°,BC=6,∴BP=,∵D是邊AB的中點(diǎn),P為AC的中點(diǎn),∴點(diǎn)E是△ABC的重心,∴,(2)過點(diǎn)B作BF∥CA交CD的延長線于點(diǎn)F,∴,∵BD=DA,∴FD=DC,BF=AC,∵CE=2,ED=3,則CD=5,∴EF=8,∴,∴,∴,設(shè)CP=k,則PA=3k,∵PD⊥AB,D是邊AB的中點(diǎn),∴PA=PB=3k,∴,∴,∵,∴,(3)∵∠ACB=90°,D是邊AB的中點(diǎn),∴,∵,∴,∵∠PBD=∠ABP,∴△PBD∽△ABP,∴∠BPD=∠A,∵∠A=∠DCA,∴∠DPE=∠DCP,∵∠PDE=∠CDP,△DPE∽△DCP,∴,∵DE=3,DC=5,∴.【點(diǎn)睛】本題是一道三角形的綜合性題目,熟練掌握三角形的重心,三角形相似的判定和性質(zhì)以及三角函數(shù)是解題的關(guān)鍵.20、(1)45,,π;(2)滿足條件的∠QQ0D為45°或135°;(3)BP的長為或;(4)≤CQ≤7.【解析】

(1)由已知,可知△APQ為等腰直角三角形,可得∠PAB,再利用三角形相似可得PA,及弧AQ的長度;(2)分點(diǎn)Q在BD上方和下方的情況討論求解即可.(3)分別討論點(diǎn)Q在BD上方和下方的情況,利用切線性質(zhì),在由(2)用BP0表示BP,由射影定理計(jì)算即可;(4)由(2)可知,點(diǎn)Q在過點(diǎn)Qo,且與BD夾角為45°的線段EF上運(yùn)動(dòng),有圖形可知,當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)E時(shí),CQ最長為7,再由垂線段最短,應(yīng)用面積法求CQ最小值.【詳解】解:(1)如圖,過點(diǎn)P做PE⊥AD于點(diǎn)E由已知,AP=PQ,∠APQ=90°∴△APQ為等腰直角三角形∴∠PAQ=∠PAB=45°設(shè)PE=x,則AE=x,DE=4﹣x∵PE∥AB∴△DEP∽△DAB∴=∴=解得x=∴PA=PE=∴弧AQ的長為?2π?=π.故答案為45,,π.(2)如圖,過點(diǎn)Q做QF⊥BD于點(diǎn)F由∠APQ=90°,∴∠APP0+∠QPD=90°∵∠P0AP+∠APP0=90°∴∠QPD=∠P0AP∵AP=PQ∴△APP0≌△PQF∴AP0=PF,P0P=QF∵AP0=P0Q0∴Q0D=P0P∴QF=FQ0∴∠QQ0D=45°.當(dāng)點(diǎn)Q在BD的右下方時(shí),同理可得∠PQ0Q=45°,此時(shí)∠QQ0D=135°,綜上所述,滿足條件的∠QQ0D為45°或135°.(3)如圖當(dāng)點(diǎn)Q直線BD上方,當(dāng)以點(diǎn)Q為圓心,BP為半徑的圓與直線BD相切時(shí)過點(diǎn)Q做QF⊥BD于點(diǎn)F,則QF=BP由(2)可知,PP0=BP∴BP0=BP∵AB=3,AD=4∴BD=5∵△ABP0∽△DBA∴AB2=BP0?BD∴9=BP×5∴BP=同理,當(dāng)點(diǎn)Q位于BD下方時(shí),可求得BP=故BP的長為或(4)由(2)可知∠QQ0D=45°則如圖,點(diǎn)Q在過點(diǎn)Q0,且與BD夾角為45°的線段EF上運(yùn)動(dòng),當(dāng)點(diǎn)P與點(diǎn)B重合時(shí),點(diǎn)Q與點(diǎn)F重合,此時(shí),CF=4﹣3=1當(dāng)點(diǎn)P與點(diǎn)D重合時(shí),點(diǎn)Q與點(diǎn)E重合,此時(shí),CE=4+3=7∴EF===5過點(diǎn)C做CH⊥EF于點(diǎn)H由面積法可知CH===∴CQ的取值范圍為:≤CQ≤7【點(diǎn)睛】本題是幾何綜合題,考查了三角形全等、勾股定理、切線性質(zhì)以及三角形相似的相關(guān)知識,應(yīng)用了分類討論和數(shù)形結(jié)合的數(shù)學(xué)思想.21、(1)A1(﹣1,﹣2),B1(2,﹣1);(2).【解析】

(1)根據(jù)軸對稱性質(zhì)解答點(diǎn)關(guān)于x軸對稱橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù);(2)根據(jù)旋轉(zhuǎn)變換的性質(zhì)、扇形面積公式計(jì)算.【詳解】(1)如圖所示:A1(﹣1,﹣2),B1(2,﹣1);(2)將△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°的△A2OB2如圖所示:線段OB掃過的面積為:【點(diǎn)睛】此題主要考查了圖形的旋轉(zhuǎn)以及位似變換和軸對稱變換等知識,根據(jù)題意得出對應(yīng)點(diǎn)坐標(biāo)位置是解題關(guān)鍵.22、(1)拋物線解析式為y=﹣x2+2x+6;(2)當(dāng)t=3時(shí),△PAB的面積有最大值;(3)點(diǎn)P(4,6).【解析】

(1)利用待定系數(shù)法進(jìn)行求解即可得;(2)作PM⊥OB與點(diǎn)M,交AB于點(diǎn)N,作AG⊥PM,先求出直線AB解析式為y=﹣x+6,設(shè)P(t,﹣t2+2t+6),則N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=PN?AG+PN?BM=PN?OB列出關(guān)于t的函數(shù)表達(dá)式,利用二次函數(shù)的性質(zhì)求解可得;(3)由PH⊥OB知DH∥AO,據(jù)此由OA=OB=6得∠BDH=∠BAO=45°,結(jié)合∠DPE=90°知若△PDE為等腰直角三角形,則∠EDP=45°,從而得出點(diǎn)E與點(diǎn)A重合,求出y=6時(shí)x的值即可得出答案.【詳解】(1)∵拋物線過點(diǎn)B(6,0)、C(﹣2,0),∴設(shè)拋物線解析式為y=a(x﹣6)(x+2),將點(diǎn)A(0,6)代入,得:﹣12a=6,解得:a=﹣,所以拋物線解析式為y=﹣(x﹣6)(x+2)=﹣x2+2x+6;(2)如圖1,過點(diǎn)P作PM⊥OB與點(diǎn)M,交AB于點(diǎn)N,作AG⊥PM于點(diǎn)G,設(shè)直線AB解析式為y=kx+b,將點(diǎn)A(0,6)、B(6,0)代入,得:,解得:,則直線AB解析式為y=﹣x+6,設(shè)P(t,﹣t2+2t+6)其中0<t<6,則N(t,﹣t+6),∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t,∴S△PAB=S△PAN+S△PBN=PN?AG+PN?BM=PN?(AG+BM)=PN?OB=×(﹣t2+3t)×6=﹣t2+9t=﹣(t﹣3)2+,∴當(dāng)t=3時(shí),△PAB的面積有最大值;(3)△PDE為等腰直角三角形,

則PE=PD,

點(diǎn)P(m,-m2+2m+6),

函數(shù)的對稱軸為:x=2,則點(diǎn)E的橫坐標(biāo)為:4-m,

則PE=|2m-4|,

即-m2+2m+6+m-6=|2m-4|,

解得:m=4或-2或5+或5-(舍去-2和5+)

故點(diǎn)P的坐標(biāo)為:(4,6)或(5-,3-5).【點(diǎn)睛】本題考查了二次函數(shù)的綜合問題,涉及到待定系數(shù)法、二次函數(shù)的最值、等腰直角三角形的判定與性質(zhì)等,熟練掌握和靈活運(yùn)用待定系數(shù)法求函數(shù)解析式、二次函數(shù)的性質(zhì)、等腰直角三角形的判定與性質(zhì)等是解題的關(guān)鍵.23、(1)100;(2)作圖見解析;(3)1.【解析】試題分析:(1)根據(jù)百分比=計(jì)算即可;(2)求出“打球”和“其他”的人數(shù),畫出條形圖即可;(3)用樣本估計(jì)總體的思想解決問題即可.試題解析:(1)本次抽樣調(diào)查中的樣本容量=30÷30%=100,故答案為100;(2)其他有100×10%=10人,打球有100﹣30﹣20﹣10=40人,條形圖如圖所示:(3)估計(jì)該校課余興趣愛好為“打球”的學(xué)生人數(shù)為2000×40%=1人.24、(1)70,0.2(2)70(3)750【解析】

(1)根據(jù)題意和統(tǒng)計(jì)表中的數(shù)據(jù)可以求得m、n的值;(2)根據(jù)(1)中求得的m的值,從而可以將條形統(tǒng)計(jì)圖補(bǔ)充完整;(3)根據(jù)統(tǒng)計(jì)表中的數(shù)據(jù)可以估計(jì)該校參加這次比賽的3000名學(xué)生中成績“優(yōu)”等約有多少人.【詳解】解:(1)由題意可得,m=200×0.35=70,n=40÷200=0.2,故答案為70,0.2;(2)由(1)知,m=70,補(bǔ)全的頻數(shù)分布直方圖,如下圖所示;(3)由題意可得,該校參加這次比賽的3000名學(xué)生中成績“優(yōu)”等約有:3000×0.25=750(人),答:該校參加這次比賽的3000名學(xué)生中成績“優(yōu)”等約有750人.【點(diǎn)睛】本題考查頻數(shù)分布直方圖、頻數(shù)分布表、用樣本估計(jì)總體,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.25、(1)A(4,0),C(3,﹣3);(2)m=;(3)E點(diǎn)的坐標(biāo)為(2,0)或(,0)或(0,﹣4);【解析】

方法一:(1)m=2時(shí),函數(shù)解析式為y=,分別令y=0,x=1,即可求得點(diǎn)A和點(diǎn)B的坐標(biāo),進(jìn)而可得到點(diǎn)C的坐標(biāo);(2)先用m表示出P,AC三點(diǎn)的坐標(biāo),分別討論∠APC=,∠ACP=,∠PAC=三種情況,利用勾股定理即可求得m的值;(3)設(shè)點(diǎn)F(x,y)是直線PE上任意一點(diǎn),過點(diǎn)F作FN⊥PM于N,可得Rt△FNP∽Rt△PBC,NP:NF=BC:BP求得直線PE的解析式,后利用△PEC是以P為直角頂點(diǎn)的等腰直角三角形求得E點(diǎn)坐標(biāo).方法二:(1)同方法一.(2)由△ACP為直角三角形,由相互垂直的兩直線斜率相乘為-1,可得m的值;(3)利用△PEC是以P為直角頂點(diǎn)的等腰直角三角形,分別討論E點(diǎn)再x軸上,y軸上的情況求得E點(diǎn)坐標(biāo).【詳解】方法一:解:(1)若m=2,拋物線y=x2﹣2mx=x2﹣4x,∴對稱軸x=2,令y=0,則x2﹣4x=0,解得x=0,x=4,∴A(4,0),∵P(1,﹣2),令x=1,則y=﹣3,∴B(1,﹣3),∴C(3,﹣3).(2)∵拋物線y=x2﹣2mx(m>1),∴A(2m,0)對稱軸x=m,∵P(1,﹣m)把x=1代入拋物線y=x2﹣2mx,則y=1﹣2m,∴B(1,1﹣2m),∴C(2m﹣1,1﹣2m),∵PA2=(﹣m)2+(2m﹣1)2=5m2﹣4m+1,PC2=(2m﹣2)2+(1﹣m)2=5m2﹣10m+5,AC2=1+(1﹣2m)2=2﹣4m+4m2,∵△ACP為直角三角形,∴當(dāng)∠ACP=90°時(shí),PA2=PC2+AC2,即5m2﹣4m+1=5m2﹣10m+5+2﹣4m+4m2,整理得:4m2﹣10m+6=0,解得:m=,m=1(舍去),當(dāng)∠APC=90°時(shí),PA2+PC2=AC2,即5m2﹣4m+1+5m2﹣10m+5=2﹣4m+4m2,整理得:6m2﹣10m+4=0,解得:m=,m=1,和1都不符合m>1,故m=.(3)設(shè)點(diǎn)F(x,y)是直線PE上任意一點(diǎn),過點(diǎn)F作FN⊥PM于N,∵∠FPN=∠PCB,∠PNF=∠CBP=90°,∴Rt△FNP∽Rt△PBC,∴NP:NF=BC:BP,即=,∴y=2x﹣2﹣m,∴直線PE的解析式為y=2x﹣2﹣m.令y=0,則x=1+,∴E(1+m,0),∴PE2=(﹣m)2+(m)2=,∴=5m2﹣10m+5,解得:m=2,m=,∴E(2,0)或E(,0),∴在x軸上存在E點(diǎn),使得△PEC是以P為直角頂點(diǎn)的等腰直角三角形,此時(shí)E(2,0)或E(,0);令x=0,則y=﹣2﹣m,∴E(0,﹣2﹣m)∴PE2=(﹣2)2+12=5∴5m2﹣10m+5=5,解得m=2,m=0(舍去),∴E(0,﹣4)∴y軸上存在點(diǎn)E,使得△PEC是以P為直角頂點(diǎn)的等腰直角三角形,此時(shí)E(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論