2022屆安徽省豪州市利辛第二中學中考考前最后一卷數(shù)學試卷含解析_第1頁
2022屆安徽省豪州市利辛第二中學中考考前最后一卷數(shù)學試卷含解析_第2頁
2022屆安徽省豪州市利辛第二中學中考考前最后一卷數(shù)學試卷含解析_第3頁
2022屆安徽省豪州市利辛第二中學中考考前最后一卷數(shù)學試卷含解析_第4頁
2022屆安徽省豪州市利辛第二中學中考考前最后一卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022中考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在平面直角坐標系中,已知點B、C的坐標分別為點B(﹣3,1)、C(0,﹣1),若將△ABC繞點C沿順時針方向旋轉(zhuǎn)90°后得到△A1B1C,則點B對應(yīng)點B1的坐標是()A.(3,1) B.(2,2) C.(1,3) D.(3,0)2.如圖,A,B兩點分別位于一個池塘的兩端,小聰想用繩子測量A,B間的距離,但繩子不夠長,一位同學幫他想了一個主意:先在地上取一個可以直接到達A,B的點C,找到AC,BC的中點D,E,并且測出DE的長為10m,則A,B間的距離為()A.15m B.25m C.30m D.20m3.如圖所示,在長為8cm,寬為6cm的矩形中,截去一個矩形(圖中陰影部分),如果剩下的矩形與原矩形相似,那么剩下矩形的面積是()A.28cm2 B.27cm2 C.21cm2 D.20cm24.下列各式正確的是()A.﹣(﹣2018)=2018 B.|﹣2018|=±2018 C.20180=0 D.2018﹣1=﹣20185.由4個相同的小立方體搭成的幾何體如圖所示,則它的主視圖是()A.B.C.D.6.如圖所示,△ABC為等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG邊長也為2,且AC與DE在同一直線上,△ABC從C點與D點重合開始,沿直線DE向右平移,直到點A與點E重合為止,設(shè)CD的長為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關(guān)系的圖象大致是()A. B.C. D.7.某種商品每件的標價是270元,按標價的八折銷售時,仍可獲利20%,則這種商品每件的進價為()A.180元 B.200元 C.225元 D.259.2元8.如圖,在平行四邊形ABCD中,AB=4,BC=6,分別以A,C為圓心,以大于AC的長為半徑作弧,兩弧相交于M,N兩點,作直線MN交AD于點E,則△CDE的周長是()A.7 B.10 C.11 D.129.△ABC的三條邊長分別是5,13,12,則其外接圓半徑和內(nèi)切圓半徑分別是()A.13,5 B.6.5,3 C.5,2 D.6.5,210.已知一元二次方程ax2+ax﹣4=0有一個根是﹣2,則a值是()A.﹣2 B. C.2 D.4二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AC與BD相交于點E,AC=BC,DE=3,AD=5,則⊙O的半徑為___________.12.小亮同學在搜索引擎中輸入“敘利亞局勢最新消息”,能搜到與之相關(guān)的結(jié)果的個數(shù)約為3550000,這個數(shù)用科學記數(shù)法表示為.13.如圖,已知AB∥CD,F(xiàn)為CD上一點,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度數(shù)為整數(shù),則∠C的度數(shù)為_____.14.如圖,直線與x軸、y軸分別交于點A、B;點Q是以C(0,﹣1)為圓心、1為半徑的圓上一動點,過Q點的切線交線段AB于點P,則線段PQ的最小是______.15.方程x+1=的解是_____.16.16的算術(shù)平方根是.三、解答題(共8題,共72分)17.(8分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是邊AB上一點,以BD為直徑的⊙O經(jīng)過點E,且交BC于點F.(1)求證:AC是⊙O的切線;(2)若BF=6,⊙O的半徑為5,求CE的長.18.(8分)如圖,將連續(xù)的奇數(shù)1,3,5,7…按如圖中的方式排成一個數(shù),用一個十字框框住5個數(shù),這樣框出的任意5個數(shù)中,四個分支上的數(shù)分別用a,b,c,d表示,如圖所示.(1)計算:若十字框的中間數(shù)為17,則a+b+c+d=______.(2)發(fā)現(xiàn):移動十字框,比較a+b+c+d與中間的數(shù).猜想:十字框中a、b、c、d的和是中間的數(shù)的______;(3)驗證:設(shè)中間的數(shù)為x,寫出a、b、c、d的和,驗證猜想的正確性;(4)應(yīng)用:設(shè)M=a+b+c+d+x,判斷M的值能否等于2020,請說明理由.19.(8分)已知AC,EC分別是四邊形ABCD和EFCG的對角線,直線AE與直線BF交于點H(1)觀察猜想如圖1,當四邊形ABCD和EFCG均為正方形時,線段AE和BF的數(shù)量關(guān)系是;∠AHB=.(2)探究證明如圖2,當四邊形ABCD和FFCG均為矩形,且∠ACB=∠ECF=30°時,(1)中的結(jié)論是否仍然成立,并說明理由.(3)拓展延伸在(2)的條件下,若BC=9,F(xiàn)C=6,將矩形EFCG繞點C旋轉(zhuǎn),在整個旋轉(zhuǎn)過程中,當A、E、F三點共線時,請直接寫出點B到直線AE的距離.20.(8分)已知:二次函數(shù)滿足下列條件:①拋物線y=ax2+bx與直線y=x只有一個交點;②對于任意實數(shù)x,a(-x+5)2+b(-x+5)=a(x-3)2+b(x-3)都成立.(1)求二次函數(shù)y=ax2+bx的解析式;(2)若當-2≤x≤r(r≠0)時,恰有t≤y≤1.5r成立,求t和r的值.21.(8分)如圖,已知A,B兩點在數(shù)軸上,點A表示的數(shù)為-10,OB=3OA,點M以每秒3個單位長度的速度從點A向右運動.點N以每秒2個單位長度的速度從點O向右運動(點M、點N同時出發(fā))數(shù)軸上點B對應(yīng)的數(shù)是______.經(jīng)過幾秒,點M、點N分別到原點O的距離相等?22.(10分)如圖,AB是⊙O的直徑,點E是AD上的一點,∠DBC=∠BED.(1)請判斷直線BC與⊙O的位置關(guān)系,并說明理由;(2)已知AD=5,CD=4,求BC的長.23.(12分)廬陽春風體育運動品商店從廠家購進甲,乙兩種T恤共400件,其每件的售價與進貨量(件)之間的關(guān)系及成本如下表所示:T恤每件的售價/元每件的成本/元甲50乙60(1)當甲種T恤進貨250件時,求兩種T恤全部售完的利潤是多少元;若所有的T恤都能售完,求該商店獲得的總利潤(元)與乙種T恤的進貨量(件)之間的函數(shù)關(guān)系式;在(2)的條件下,已知兩種T恤進貨量都不低于100件,且所進的T恤全部售完,該商店如何安排進貨才能使獲得的利潤最大?24.近幾年“霧霾”成為全社會關(guān)注的話題某校環(huán)保志愿者小組對該市2018年空氣質(zhì)量進行調(diào)查,從全年365天中隨機抽查了50天的空氣質(zhì)量指數(shù)(AQI),得到以下數(shù)據(jù):43、62、80、78、46、78、23、59、32、78、86、125、98、116、86、69、28、43、58、87、75、116、178、146、57、26、43、59、77、103、126、159、201、289、315、253、196、102、93、72、56、43、39、44、47、34、31、29、43、1.(1)請你完成如下的統(tǒng)計表;AQI0~5051~100101~150151~200201~250300以上質(zhì)量等級A(優(yōu))B(良)C(輕度污染)D(中度污染)E(重度污染)F(嚴重污染)天數(shù)(2)請你根據(jù)題中所給信息繪制該市2018年空氣質(zhì)量等級條形統(tǒng)計圖;(3)請你估計該市全年空氣質(zhì)量等級為“重度污染”和“嚴重污染”的天數(shù).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

作出點A、B繞點C按順時針方向旋轉(zhuǎn)90°后得到的對應(yīng)點,再順次連接可得△A1B1C,即可得到點B對應(yīng)點B1的坐標.【詳解】解:如圖所示,△A1B1C即為旋轉(zhuǎn)后的三角形,點B對應(yīng)點B1的坐標為(2,2).故選:B.【點睛】此題主要考查了平移變換和旋轉(zhuǎn)變換,正確根據(jù)題意得出對應(yīng)點位置是解題關(guān)鍵.圖形或點旋轉(zhuǎn)之后要結(jié)合旋轉(zhuǎn)的角度和圖形的特殊性質(zhì)來求出旋轉(zhuǎn)后的點的坐標.2、D【解析】

根據(jù)三角形的中位線定理即可得到結(jié)果.【詳解】解:由題意得AB=2DE=20cm,故選D.【點睛】本題考查的是三角形的中位線,解答本題的關(guān)鍵是熟練掌握三角形的中位線定理:三角形的中位線平行于第三邊,并且等于第三邊的一半.3、B【解析】

根據(jù)題意,剩下矩形與原矩形相似,利用相似形的對應(yīng)邊的比相等可得.【詳解】解:依題意,在矩形ABDC中截取矩形ABFE,則矩形ABDC∽矩形FDCE,則設(shè)DF=xcm,得到:解得:x=4.5,則剩下的矩形面積是:4.5×6=17cm1.【點睛】本題就是考查相似形的對應(yīng)邊的比相等,分清矩形的對應(yīng)邊是解決本題的關(guān)鍵.4、A【解析】

根據(jù)去括號法則、絕對值的性質(zhì)、零指數(shù)冪的計算法則及負整數(shù)指數(shù)冪的計算法則依次計算各項即可解答.【詳解】選項A,﹣(﹣2018)=2018,故選項A正確;選項B,|﹣2018|=2018,故選項B錯誤;選項C,20180=1,故選項C錯誤;選項D,2018﹣1=,故選項D錯誤.故選A.【點睛】本題去括號法則、絕對值的性質(zhì)、零指數(shù)冪的計算法則及負整數(shù)指數(shù)冪的計算法則,熟知去括號法則、絕對值的性質(zhì)、零指數(shù)冪及負整數(shù)指數(shù)冪的計算法則是解決問題的關(guān)鍵.5、A【解析】試題分析:幾何體的主視圖有2列,每列小正方形數(shù)目分別為2,1.故選A.考點:三視圖視頻6、A【解析】

此題可分為兩段求解,即C從D點運動到E點和A從D點運動到E點,列出面積隨動點變化的函數(shù)關(guān)系式即可.【詳解】解:設(shè)CD的長為與正方形DEFG重合部分圖中陰影部分的面積為當C從D點運動到E點時,即時,.當A從D點運動到E點時,即時,,與x之間的函數(shù)關(guān)系由函數(shù)關(guān)系式可看出A中的函數(shù)圖象與所求的分段函數(shù)對應(yīng).故選A.【點睛】本題考查的動點變化過程中面積的變化關(guān)系,重點是列出函數(shù)關(guān)系式,但需注意自變量的取值范圍.7、A【解析】

設(shè)這種商品每件進價為x元,根據(jù)題中的等量關(guān)系列方程求解.【詳解】設(shè)這種商品每件進價為x元,則根據(jù)題意可列方程270×0.8-x=0.2x,解得x=180.故選A.【點睛】本題主要考查一元一次方程的應(yīng)用,解題的關(guān)鍵是確定未知數(shù),根據(jù)題中的等量關(guān)系列出正確的方程.8、B【解析】∵四邊形ABCD是平行四邊形,

∴AD=BC=4,CD=AB=6,

∵由作法可知,直線MN是線段AC的垂直平分線,

∴AE=CE,

∴AE+DE=CE+DE=AD,

∴△CDE的周長=CE+DE+CD=AD+CD=4+6=1.

故選B.9、D【解析】

根據(jù)邊長確定三角形為直角三角形,斜邊即為外切圓直徑,內(nèi)切圓半徑為,【詳解】解:如下圖,∵△ABC的三條邊長分別是5,13,12,且52+122=132,∴△ABC是直角三角形,其斜邊為外切圓直徑,∴外切圓半徑==6.5,內(nèi)切圓半徑==2,故選D.【點睛】本題考查了直角三角形內(nèi)切圓和外切圓的半徑,屬于簡單題,熟悉概念是解題關(guān)鍵.10、C【解析】分析:將x=-2代入方程即可求出a的值.詳解:將x=-2代入可得:4a-2a-4=0,解得:a=2,故選C.點睛:本題主要考查的是解一元一次方程,屬于基礎(chǔ)題型.解方程的一般方法的掌握是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

如圖,作輔助線CF;證明CF⊥AB(垂徑定理的推論);證明AD⊥AB,得到AD∥OC,△ADE∽△COE;得到AD:CO=DE:OE,求出CO的長,即可解決問題.【詳解】如圖,連接CO并延長,交AB于點F;∵AC=BC,∴CF⊥AB(垂徑定理的推論);∵BD是⊙O的直徑,∴AD⊥AB;設(shè)⊙O的半徑為r;∴AD∥OC,△ADE∽△COE,∴AD:CO=DE:OE,而DE=3,AD=5,OE=r-3,CO=r,∴5:r=3:(r-3),解得:r=,故答案為.【點睛】該題主要考查了相似三角形的判定及其性質(zhì)、垂徑定理的推論等幾何知識點的應(yīng)用問題;解題的關(guān)鍵是作輔助線,構(gòu)造相似三角形,靈活運用有關(guān)定來分析、判斷.12、3.55×1.【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】3550000=3.55×1,故答案是:3.55×1.【點睛】考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.13、36°或37°.【解析】分析:先過E作EG∥AB,根據(jù)平行線的性質(zhì)可得∠AEF=∠BAE+∠DFE,再設(shè)∠CEF=x,則∠AEC=2x,根據(jù)6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x<25°,進而得到∠C的度數(shù).詳解:如圖,過E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,設(shè)∠CEF=x,則∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度數(shù)為整數(shù),∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案為:36°或37°.點睛:本題主要考查了平行線的性質(zhì)以及三角形外角性質(zhì)的運用,解決問題的關(guān)鍵是作平行線,解題時注意:兩直線平行,內(nèi)錯角相等.14、【解析】解:過點C作CP⊥直線AB于點P,過點P作⊙C的切線PQ,切點為Q,此時PQ最小,連接CQ,如圖所示.當x=0時,y=3,∴點B的坐標為(0,3);當y=0時,x=4,∴點A的坐標為(4,0),∴OA=4,OB=3,∴AB==5,∴sinB=.∵C(0,﹣1),∴BC=3﹣(﹣1)=4,∴CP=BC?sinB=.∵PQ為⊙C的切線,∴在Rt△CQP中,CQ=1,∠CQP=90°,∴PQ==.故答案為.15、x=1【解析】

無理方程兩邊平方轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到無理方程的解.【詳解】兩邊平方得:(x+1)1=1x+5,即x1=4,

開方得:x=1或x=-1,

經(jīng)檢驗x=-1是增根,無理方程的解為x=1.

故答案為x=116、4【解析】

正數(shù)的正的平方根叫算術(shù)平方根,0的算術(shù)平方根還是0;負數(shù)沒有平方根也沒有算術(shù)平方根∵∴16的平方根為4和-4∴16的算術(shù)平方根為4三、解答題(共8題,共72分)17、(1)證明見解析;(2)CE=1.【解析】

(1)根據(jù)等角對等邊得∠OBE=∠OEB,由角平分線的定義可得∠OBE=∠EBC,從而可得∠OEB=∠EBC,根據(jù)內(nèi)錯角相等,兩直線平行可得OE∥BC,根據(jù)兩直線平行,同位角相等可得∠OEA=90°,從而可證AC是⊙O的切線.

(2)根據(jù)垂徑定理可求BH=BF=3,根據(jù)三個角是直角的四邊形是矩形,可得四邊形OHCE是矩形,由矩形的對邊相等可得CE=OH,在Rt△OBH中,利用勾股定理可求出OH的長,從而求出CE的長.【詳解】(1)證明:如圖,連接OE,

∵OB=OE,

∴∠OBE=∠OEB,

∵BE平分∠ABC.

∴∠OBE=∠EBC,

∴∠OEB=∠EBC,

∴OE∥BC,

∵∠ACB=90°,

∴∠OEA=∠ACB=90°,

∴AC是⊙O的切線.

(2)解:過O作OH⊥BF,

∴BH=BF=3,四邊形OHCE是矩形,

∴CE=OH,

在Rt△OBH中,BH=3,OB=5,

∴OH==1,

∴CE=1.【點睛】本題考查切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線和垂徑定理以及勾股定理的運用,具有一定的綜合性.18、(1)68

;(2)4倍;(3)4x,猜想正確,見解析;(4)M的值不能等于1,見解析.【解析】

(1)直接相加即得到答案;(2)根據(jù)(1)猜想a+b+c+d=4x;(3)用x表示a、b、c、d,相加后即等于4x;(4)得到方程5x=1,求出的x不符合數(shù)表里數(shù)的特征,故不能等于1.【詳解】(1)5+15+19+29=68,故答案為68;(2)根據(jù)(1)猜想a+b+c+d=4x,答案為:4倍;(3)a=x-12,b=x-2,c=x+2,d=x+12,∴a+b+c+d=x-12+x-2+x+2+x+12=4x,∴猜想正確;(4)M=a+b+c+d+x=4x+x=5x,若M=5x=1,解得:x=404,但整個數(shù)表所有的數(shù)都為奇數(shù),故不成立,∴M的值不能等于1.【點睛】本題考查了一元一次方程的應(yīng)用.當解得方程的解后,要觀察是否滿足題目和實際要求再進行取舍.19、(1),45°;(2)不成立,理由見解析;(3).【解析】

(1)由正方形的性質(zhì),可得,∠ACB=∠GEC=45°,求得△CAE∽△CBF,由相似三角形的性質(zhì)得到,∠CAB==45°,又因為∠CBA=90°,所以∠AHB=45°.(2)由矩形的性質(zhì),及∠ACB=∠ECF=30°,得到△CAE∽△CBF,由相似三角形的性質(zhì)可得∠CAE=∠CBF,,則∠CAB=60°,又因為∠CBA=90°,求得∠AHB=30°,故不成立.(3)分兩種情況討論:①作BM⊥AE于M,因為A、E、F三點共線,及∠AFB=30°,∠AFC=90°,進而求得AC和EF,根據(jù)勾股定理求得AF,則AE=AF﹣EF,再由(2)得:,所以BF=3﹣3,故BM=.②如圖3所示:作BM⊥AE于M,由A、E、F三點共線,得:AE=6+2,BF=3+3,則BM=.【詳解】解:(1)如圖1所示:∵四邊形ABCD和EFCG均為正方形,∴,∠ACB=∠GEC=45°,∴∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴,∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=45°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣45°=45°,故答案為,45°;(2)不成立;理由如下:∵四邊形ABCD和EFCG均為矩形,且∠ACB=∠ECF=30°,∴,∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=60°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣60°=30°;(3)分兩種情況:①如圖2所示:作BM⊥AE于M,當A、E、F三點共線時,由(2)得:∠AFB=30°,∠AFC=90°,在Rt△ABC和Rt△CEF中,∵∠ACB=∠ECF=30°,∴AC=,EF=CF×tan30°=6×=2,在Rt△ACF中,AF=,∴AE=AF﹣EF=6﹣2,由(2)得:,∴BF=(6﹣2)=3﹣3,在△BFM中,∵∠AFB=30°,∴BM=BF=;②如圖3所示:作BM⊥AE于M,當A、E、F三點共線時,同(2)得:AE=6+2,BF=3+3,則BM=BF=;綜上所述,當A、E、F三點共線時,點B到直線AE的距離為.【點睛】本題考察正方形的性質(zhì)和矩形的性質(zhì)以及三點共線,熟練掌握正方形的性質(zhì)和矩形的性質(zhì),知道分類討論三點共線問題是解題的關(guān)鍵.本題屬于中等偏難.20、(1)y=x2+x;(2)t=-4,r=-1.【解析】

(1)由①聯(lián)立方程組,根據(jù)拋物線y=ax2+bx與直線y=x只有一個交點可以求出b的值,由②可得對稱軸為x=1,從而得a的值,進而得出結(jié)論;(2)進行分類討論,分別求出t和r的值.【詳解】(1)y=ax2+bx和y=x聯(lián)立得:ax2+(b+1)x=0,Δ=0得:(b-1)2=0,得b=1,∵對稱軸為=1,∴=1,∴a=,∴y=x2+x.(2)因為y=x2+x=(x-1)2+,所以頂點(1,)當-2<r<1,且r≠0時,當x=r時,y最大=r2+r=1.5r,得r=-1,當x=-2時,y最小=-4,所以,這時t=-4,r=-1.當r≥1時,y最大=,所以1.5r=,所以r=,不合題意,舍去,綜上可得,t=-4,r=-1.【點睛】本題考查二次函數(shù)綜合題,解題的關(guān)鍵是理解題意,利用二次函數(shù)的性質(zhì)解決問題.21、(1)1;(2)經(jīng)過2秒或2秒,點M、點N分別到原點O的距離相等【解析】試題分析:(1)根據(jù)OB=3OA,結(jié)合點B的位置即可得出點B對應(yīng)的數(shù);(2)設(shè)經(jīng)過x秒,點M、點N分別到原點O的距離相等,找出點M、N對應(yīng)的數(shù),再分點M、點N在點O兩側(cè)和點M、點N重合兩種情況考慮,根據(jù)M、N的關(guān)系列出關(guān)于x的一元一次方程,解之即可得出結(jié)論.試題解析:(1)∵OB=3OA=1,

∴B對應(yīng)的數(shù)是1.

(2)設(shè)經(jīng)過x秒,點M、點N分別到原點O的距離相等,

此時點M對應(yīng)的數(shù)為3x-2,點N對應(yīng)的數(shù)為2x.

①點M、點N在點O兩側(cè),則

2-3x=2x,

解得x=2;

②點M、點N重合,則,

3x-2=2x,

解得x=2.

所以經(jīng)過2秒或2秒,點M、點N分別到原點O的距離相等.22、(1)BC與⊙O相切;理由見解析;(2)BC=6【解析】試題分析:(1)BC與⊙O相切;由已知可得∠BAD=∠BED又由∠DBC=∠BED可得∠BAD=∠DBC,由AB為直徑可得∠ADB=90°,從而可得∠CBO=90°,繼而可得BC與⊙

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論