




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
直線與平面平面與平面垂直的性質(zhì)2021/5/91思考:1.已知直線和平面,如果,那么的位置關(guān)系如何?2.設(shè),且那么直線AB與平面的位置關(guān)系如何?3.設(shè)平面垂直平面,點(diǎn)P在平面內(nèi),過點(diǎn)P作平面
的垂線,直線與平面具有什么位置關(guān)系?2021/5/92線面、面面垂直的性質(zhì)定理
1.線面垂直性質(zhì)定理:垂直于同一個平面的兩條直線平行(線面垂直→線線平行).
2.面面垂直性質(zhì)定理①:兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直.用符號語言表示為:若α⊥β,α∩β=l,a?α,a⊥l,則a⊥β(面面垂直→線面垂直).
3.面面垂直性質(zhì)定理②:如果兩個平面互相垂直,那么經(jīng)過第一個平面內(nèi)的一點(diǎn)垂直于第二個平面的直線必在第一個平面內(nèi).2021/5/93直線與平面垂直的性質(zhì)定理的簡單應(yīng)用例1:如圖
1,在四面體P-ABC中,若PA⊥BC,PB⊥AC,求證:PC⊥AB.圖12021/5/94思維突破:要證線線垂直,可先證線面垂直,進(jìn)而由線面垂直的定義得出線線垂直.證明:過P作PH⊥平面ABC,垂足為H,連接AH、BH和CH.∵PA⊥BC,PH⊥BC,PA∩PH=P,∴BC⊥平面PAH.又AH?平面PAH,∴BC⊥AH.同理AC⊥BH,即H為△ABC的垂心,∴AB⊥CH.∵PH⊥AB,CH∩PH=H,∴AB⊥平面PCH.∵PC?平面PCH,∴PC⊥AB.點(diǎn)評:從本例可以進(jìn)一步體會線面位置關(guān)系的相互轉(zhuǎn)化在解(證)題中的作用.2021/5/951-1.已知a、b是兩條不同的直線,α、β為兩個不同的平面,a⊥α,b⊥β,則下列命題中不正確的是()BA.若a與b相交,則α與β相交B.若α與β相交,則a與b相交C.若a∥b,則α∥βD.若α⊥β,則a⊥b解析:α與β相交,a與b可能是異面直線.1-2.α、β是兩個不同的平面,m、n是α、β之外的兩條不同的直線,給出以下四個論斷:①m⊥n;②α⊥β;③n⊥β;④m⊥α.以其中三個論斷作為條件,余下一個作為結(jié)論,寫出你認(rèn)為正確的一個命題___________.①③④→②解析:答案不唯一,如:②③④→①也正確.2021/5/96圖2證明:作AH⊥SB于H.∵平面SAB⊥平面SBC,∴AH⊥平面SBC.∴AH⊥BC.又SA⊥平面ABC,∴SA⊥BC.又∵AH∩SA=A,∴BC⊥平面SAB.∴BC⊥AB.面面垂直→線面垂直.平面與平面垂直的性質(zhì)定理的簡單應(yīng)用例2:如圖
2,在三棱錐S-ABC中,SA⊥平面ABC,平面SAB⊥平面SBC.求證:AB⊥BC.2021/5/972-1.如圖3,四棱錐V-ABCD的底面為矩形,側(cè)面VAB⊥底面ABCD,且VB⊥平面VAD.求證:平面VBC⊥平面VAC.圖3證明:∵四邊形ABCD為矩形,∴BC⊥AB.又∵面VBA⊥面ABCD,面VBA∩面ABCD=AB,∴BC⊥面VAB.∴BC⊥VA.∵VB⊥面VAD,∴VB⊥VA.∵VB∩BC=B,∴VA⊥面VBC.又∵VA?面VAC,∴面VBC⊥面VAC.2021/5/98面面垂直的綜合應(yīng)用例3:如圖
4,已知矩形ABCD,過A作SA⊥平面AC,AE⊥SB于E點(diǎn),過E作EF⊥SC于F點(diǎn).(1)求證:AF⊥SC;(2)若平面AEF交SD于G,求證:AG⊥SD.圖4證明:(1)∵SA⊥平面AC,BC?平面AC,∴SA⊥BC.∵四邊形ABCD是矩形,∴AB⊥BC.∴BC⊥平面SAB.又AE?平面SBC,∴BC⊥AE.2021/5/99又SB⊥AE,∴AE⊥平面SBC.∴AE⊥SC.又EF⊥SC,∴SC⊥平面AEF,∴AF⊥SC.(2)∵SA⊥平面AC,DC?平面AC,∴SA⊥DC.又AD⊥DC,∴DC⊥平面SAD.又AG?平面SAD,∴DC⊥AG.又由(1)有SC⊥平面AEF,AG?平面AEF,∴SC⊥AG,且SC∩DC=C,∴AG⊥平面SDC.∴AG⊥SD.2021/5/9103-1.已知PA⊥矩形ABCD所在平面,平面PDC與平面ABCD成45°角,M、N分別為AB、PC的中點(diǎn).求證:平面MND⊥平面PDC.圖5證明:如圖5,設(shè)E為PD中點(diǎn),連接AE、EN,∵M(jìn)、N
分別為AB、PC中點(diǎn),
∴EN∥DC∥AB,∴四邊形AMNE為平行四邊形,∴MN∥AE.2021/5/911∴DC⊥AE,DC⊥PD,∴∠PDA是二面角P-DC-A的平面角.∵PDA=45°,又PA⊥AD,∴∠APD=45°,△PAD是等腰直角三角形.∵E為PD的中點(diǎn),∴AE⊥PD.又∵DC⊥AE,∴AE⊥平面PDC.又MN∥AE,∴MN⊥平面PDC.∴平面MND⊥平面PDC.∵PA⊥矩形ABCD所在的平面,∴PA⊥DC,PA⊥AD.又∵DC⊥AD,∴DC⊥平面PAD,而AE?平面PAD.2021/5/912例4:證明:如果兩個相交平面都垂直于第三個平面,那么它們的交線垂直于第三個平面.證法一:如圖5,在γ內(nèi)取一點(diǎn)P,作PA垂直α與γ的交線于A,再作PB垂直β與γ的交線于B,則PA⊥α,PB⊥β.∵l=α∩β,∴l(xiāng)⊥PA,l⊥PB.∵α與β相交,∴PA與PB相交.又PA?γ,PB?γ,∴l(xiāng)⊥γ.圖52021/5/913圖6
證法二:如圖6,在α內(nèi)作直線m垂直于α與γ的交線,在β內(nèi)作直線n垂直于β與γ的交線, ∵α⊥γ,β⊥γ, ∴m⊥γ,n⊥γ.
∴m∥n.又n?β, ∴m∥β,∴m∥l,∴l(xiāng)⊥γ.2021/5/914證法三:如圖7,在l上取一點(diǎn)P,過點(diǎn)P作γ的垂線l′,但α∩β=l,∴l(xiāng)與l′重合,∴l(xiāng)⊥γ.圖72021/5/915
點(diǎn)評:證法一、證法二都是利用“兩平面垂直時,在一個平面內(nèi)垂直于兩平面的交線的直線垂直于另一個平面”這一性質(zhì),添加了在一個平面內(nèi)垂直于交線的直線這樣的輔助線.這是證法一、證法二的關(guān)鍵.
證法三是利用“如果兩個平面互相垂直,那么經(jīng)過第一個平面內(nèi)的一點(diǎn)垂直于第二個平面的直線,在第一個平面內(nèi)”這一性質(zhì),添加了l′這條輔助線,這是證法三的關(guān)鍵. 通過此例,體會兩平面垂直時,添加輔助線的方法.2021/5/9161.下面四個命題,其中真命題的個數(shù)為()B
①如果一條直線垂直于一個平面內(nèi)的無數(shù)條直線,那么這條直線和這個平面垂直;②過空間一點(diǎn)有且只有一條直線和已知平面垂直;③一條直線和一個平面不垂直,這條直線和平面內(nèi)的所有直線都不垂直;④垂直于同一平面的兩條直線平行.A.1個B.2個C.3個D.4個
2.兩個平面互相垂直,一條直線和其中一個平面平行,則這條直線和另一個平面的位置關(guān)系是______________________.解析:②、④是真命題.相交、平行、在平面內(nèi)練習(xí):2021/5/917小結(jié):1.線面垂直性質(zhì)定理:垂直于同一個平面的兩條直線平行(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司貨款擔(dān)保合同范本
- cso公司合同范本
- 專題一第2課五、《軟件系統(tǒng)》教學(xué)設(shè)計(jì) 2023-2024學(xué)年青島版(2018)初中信息技術(shù)七年級上冊
- 15《我與地壇》教學(xué)設(shè)計(jì) 2024-2025學(xué)年統(tǒng)編版高中語文必修上冊
- 修房子木材出售合同范本
- 凍庫工程銷售合同范本
- 公裝合同范本
- 個人郊區(qū)房屋買賣合同范本
- 個人餐廳轉(zhuǎn)讓合同范本
- 2024年新鄉(xiāng)市長垣市公益性崗位招聘筆試真題
- 企業(yè)管理概論-課件全書課件完整版ppt全套教學(xué)教程最全電子教案電子講義(最新)
- 圍手術(shù)期肺部感染
- 餐飲服務(wù)食品安全監(jiān)督量化分級動態(tài)等級評定檢查表
- 北師大版語文選修《蕭蕭》ppt課件1
- 大學(xué)生職業(yè)素養(yǎng)課件-5第五單元學(xué)會有效溝通-PPT課件
- 《談骨氣》課文閱讀(共2頁)
- 病原生物與免疫學(xué)(中職)緒論P(yáng)PT課件
- 新起點(diǎn)小學(xué)英語一年級上冊單詞卡片(共23頁)
- 蝴蝶蘭PPT課件
- 譯林版五下英語1-3單元電子稿
- 節(jié)后復(fù)工安全溫馨提示
評論
0/150
提交評論