版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023年黑龍江省七臺河市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.()A.A.sinx+C
B.cosx+C
C.-sinx+C
D.-cosx+C
2.
3.當(dāng)x→0時,x2是x-ln(1+x)的().
A.較高階的無窮小B.等價無窮小C.同階但不等價無窮小D.較低階的無窮小
4.過曲線y=xlnx上M0點的切線平行于直線y=2x,則切點M0的坐標(biāo)是().A.A.(1,0)B.(e,0)C.(e,1)D.(e,e)
5.
6.
7.()。A.
B.
C.
D.
8.
9.A.-3-xln3
B.-3-x/ln3
C.3-x/ln3
D.3-xln3
10.設(shè)f(x)為連續(xù)函數(shù),則等于().A.A.f(x2)B.x2f(x2)C.xf(x2)D.2xf(x2)11.設(shè)函數(shù)f(x)=2sinx,則f'(x)等于().A.A.2sinxB.2cosxC.-2sinxD.-2cosx.
12.設(shè)f(xo)=0,f(xo)<0,則下列結(jié)論中必定正確的是
A.xo為f(x)的極大值點
B.xo為f(x)的極小值點
C.xo不為f(x)的極值點
D.xo可能不為f(x)的極值點
13.下列結(jié)論正確的有A.若xo是f(x)的極值點,則x0一定是f(x)的駐點
B.若xo是f(x)的極值點,且f’(x0)存在,則f’(x)=0
C.若xo是f(x)的駐點,則x0一定是f(xo)的極值點
D.若f(xo),f(x2)分別是f(x)在(a,b)內(nèi)的極小值與極大值,則必有f(x1)<f(x2)
14.建立共同愿景屬于()的管理觀念。
A.科學(xué)管理B.企業(yè)再造C.學(xué)習(xí)型組織D.目標(biāo)管理15.A.A.2/3B.3/2C.2D.316.A.A.連續(xù)點
B.
C.
D.
17.
18.()。A.
B.
C.
D.
19.人們對某一目標(biāo)的重視程度與評價高低,即人們在主觀上認(rèn)為這種報酬的價值大小叫做()
A.需要B.期望值C.動機D.效價20.
二、填空題(20題)21.
22.ylnxdx+xlnydy=0的通解是______.
23.
24.
25.
26.
27.28.
29.
30.31.級數(shù)的收斂區(qū)間為______.32.33.34.35.36.37.交換二重積分次序∫01dx∫x2xf(x,y)dy=________。38.39.
40.
三、計算題(20題)41.將f(x)=e-2X展開為x的冪級數(shù).42.
43.
44.求曲線在點(1,3)處的切線方程.
45.求微分方程y"-4y'+4y=e-2x的通解.
46.求微分方程的通解.47.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.48.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.49.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
50.
51.52.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
53.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
54.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
55.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.56.證明:57.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則58.
59.
60.四、解答題(10題)61.
62.
63.
64.
65.求fe-2xdx。
66.
67.
68.
69.70.五、高等數(shù)學(xué)(0題)71.
六、解答題(0題)72.
參考答案
1.A
2.A
3.C解析:本題考查的知識點為無窮小階的比較.
由于
可知當(dāng)x→0時,x2與x-ln(1+x)為同階但不等價無窮?。蕬?yīng)選C.
4.D本題考查的知識點為導(dǎo)數(shù)的幾何意義.
由導(dǎo)數(shù)的幾何意義可知,若y=f(x)在點x0處可導(dǎo),則曲線y=f(x)在點(x0,f(x0))處必定存在切線,且切線的斜率為f'(x0).
由于y=xlnx,可知
y'=1+lnx,
切線與已知直線y=2x平行,直線的斜率k1=2,可知切線的斜率k=k1=2,從而有
1+lnx0=2,
可解得x0=e,從而知
y0=x0lnx0=elne=e.
故切點M0的坐標(biāo)為(e,e),可知應(yīng)選D.
5.B
6.B
7.A
8.D
9.A由復(fù)合函數(shù)鏈?zhǔn)椒▌t可知,因此選A.
10.D解析:
11.B本題考查的知識點為導(dǎo)數(shù)的運算.
f(x)=2sinx,
f'(x)=2(sinx)'=2cosx,
可知應(yīng)選B.
12.A
13.B
14.C解析:建立共同愿景屬于學(xué)習(xí)型組織的管理觀念。
15.A
16.C解析:
17.D
18.C
19.D解析:效價是指個人對達(dá)到某種預(yù)期成果的偏愛程度,或某種預(yù)期成果可能給行為者帶來的滿足程度。
20.B
21.e1/2e1/2
解析:
22.(lnx)2+(lny)2=C
23.
本題考查的知識點為冪級數(shù)的收斂半徑.
所給級數(shù)為缺項情形,
24.2xy(x+y)+3
25.(2x-y)dx+(2y-x)dy(2x-y)dx+(2y-x)dy解析:
26.1/61/6解析:27.(-∞,+∞).
本題考查的知識點為求冪級數(shù)的收斂區(qū)間.
若ρ=0,則收斂半徑R=+∞,收斂區(qū)間為(-∞,+∞).
若ρ=+∞,則收斂半徑R=0,級數(shù)僅在點x=0收斂.
28.
29.2x-4y+8z-7=0
30.31.(-1,1)本題考查的知識點為求冪級數(shù)的收斂區(qū)間.
所給級數(shù)為不缺項情形.
可知收斂半徑,因此收斂區(qū)間為
(-1,1).
注:《綱》中指出,收斂區(qū)間為(-R,R),不包括端點.
本題一些考生填1,這是誤將收斂區(qū)間看作收斂半徑,多數(shù)是由于考試時過于緊張而導(dǎo)致的錯誤.
32.33.1/2本題考查的知識點為極限的運算.
34.本題考查的知識點為:求解可分離變量的微分方程.
35.
36.
本題考查的知識點為函數(shù)商的求導(dǎo)運算.
考生只需熟記導(dǎo)數(shù)運算的法則
37.因為∫01dx∫x2xf(x,y)dy,所以其區(qū)域如圖所示,所以先對x的積分為。
38.
本題考查的知識點為二階常系數(shù)線性微分方程的求解.
39.
40.33解析:
41.
42.
43.
44.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
45.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
46.
47.
48.
49.由二重積分物理意義知
50.
51.
52.
53.函數(shù)的定義域為
注意
54.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度綠色環(huán)保廠房裝飾裝修工程承包合同4篇
- 2024水庫魚塘承包養(yǎng)殖與市場拓展合作協(xié)議2篇
- 2025年度產(chǎn)權(quán)房屋買賣定金合同產(chǎn)權(quán)過戶范本3篇
- 2025年度廠房買賣合同范本(新能源產(chǎn)業(yè)適用)4篇
- 二零二五年度網(wǎng)絡(luò)安全服務(wù)提供商保密及數(shù)據(jù)處理協(xié)議3篇
- 二零二五年度船舶氣象預(yù)報船員聘用合同范本3篇
- 個人IT崗位保密條款合同(2024版)版B版
- 2025年度XX地區(qū)水資源綜合利用項目合作協(xié)議3篇
- 2025年度智能自動化廠房車間租賃合同4篇
- 2025年度嬰幼兒用品配送與安全監(jiān)管合同4篇
- 2024年人教版小學(xué)三年級信息技術(shù)(下冊)期末試卷附答案
- 中國子宮內(nèi)膜增生管理指南(2022)解讀
- 應(yīng)征公民政治考核表(含各種附表)
- 2024年第九屆“鵬程杯”五年級語文邀請賽試卷
- 名師成長論名師成長的模式、機制和規(guī)律研究
- FSSC22000V6.0變化點和文件修改建議
- 2024年高一年級上冊語文期末復(fù)習(xí):語言文字運用Ⅰ刷題練習(xí)題(含答案)
- 新蘇教版三年級下冊科學(xué)全冊知識點(背誦用)
- 鄉(xiāng)鎮(zhèn)風(fēng)控維穩(wěn)應(yīng)急預(yù)案演練
- 腦梗死合并癲癇病人的護理查房
- 成都銀行貸款合同
評論
0/150
提交評論