版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
優(yōu)選章經(jīng)典傅里葉變換講解當前第1頁\共有201頁\編于星期四\10點傅里葉1768年生于法國,1807年提出“任何周期信號都可用正弦函數(shù)級數(shù)表示”,1822年在“熱的分析理論”一書中再次提出。1829年狄里赫利給出傅里葉變換收斂條件。傅里葉變換得到大規(guī)模的應(yīng)用,則是到了上世紀60年代之后。3.1傅里葉變換的產(chǎn)生傅里葉的兩個最主要的貢獻:(1)“周期信號都可表示為諧波關(guān)系的正弦信號的加權(quán)和”;(2)“非周期信號都可用正弦信號的加權(quán)積分表示”.當前第2頁\共有201頁\編于星期四\10點三角函數(shù)就是一個標準的兩兩正交的函數(shù)空間。它滿足下列完備正交函數(shù)的三個條件:3.2周期信號的傅里葉分析1.歸一化:2.歸一正交化:3.歸一化完備性:可以用其線性組合表示任意信號當前第3頁\共有201頁\編于星期四\10點周期的終點
設(shè)三角函數(shù)的完備函數(shù)集為:其中三角函數(shù)集也可表示為:3.2.1傅里葉級數(shù)的三角形式基頻
周期
周期的起點
當前第4頁\共有201頁\編于星期四\10點時,有(2)“單位”常數(shù)性,即當
滿足:(1)正交性:函數(shù)集中的任意函數(shù)兩兩相正交,有
當前第5頁\共有201頁\編于星期四\10點可以將“任意”周期函數(shù)在這個正交函數(shù)集中展開為系數(shù)稱為傅里葉級數(shù)
當前第6頁\共有201頁\編于星期四\10點同上式
傅里葉級數(shù)的三角展開式
另一種形式
直流分量
n=1n>1基波分量
n次諧波分量
當前第7頁\共有201頁\編于星期四\10點可展開為傅里葉級數(shù)的條件:(2)在區(qū)間內(nèi)有有限個間斷點;(1)絕對可積,即:(3)在區(qū)間內(nèi)有有限個極值點。Direchlet條件傅里葉級數(shù)存在的充要條件式中,
為n次諧波振幅。
為n次諧波初始相位。!并非任意周期信號都能進行傅里葉級數(shù)展開!
當前第8頁\共有201頁\編于星期四\10點1.從三角函數(shù)形式的傅里葉級數(shù)推導3.2.2傅里葉級數(shù)的復(fù)指數(shù)形式利用歐拉公式:式中幅度相位
復(fù)指數(shù)
幅度
當前第9頁\共有201頁\編于星期四\10點的具體求法如下:2.直接從復(fù)變正交函數(shù)集推導中展開,有在復(fù)變正交函數(shù)空間將原函數(shù)當前第10頁\共有201頁\編于星期四\10點式中例求的指數(shù)傅里葉級數(shù)和三角傅里葉級數(shù)。已知沖激序列…-T0
O
T02T0t…當前第11頁\共有201頁\編于星期四\10點的三角傅里葉級數(shù)為:又解當前第12頁\共有201頁\編于星期四\10點求下圖中三角波的三角傅里葉級數(shù)。則為的周期延拓,即
將去除直流分量,則僅剩交流分量在內(nèi)的函數(shù)記為(1)將周期函數(shù)例解A-T0OT0
2T0t當前第13頁\共有201頁\編于星期四\10點
故當前第14頁\共有201頁\編于星期四\10點(2)利用直接法求解故
當前第15頁\共有201頁\編于星期四\10點常稱為f(t)的截斷傅里葉級數(shù)表示式。用MATLAB的符號積分函數(shù)int()可表示上式。格式為:(1)intf=int(f,v);
給出符號表達式f對指定變量v的(不帶積分常數(shù))不定積分;(2)intf=int(f,v,a,b);
給出符號表達式f對指定變量v的定積分。3.2.3傅里葉級數(shù)的MATLAB仿真實現(xiàn)當前第16頁\共有201頁\編于星期四\10點3.3周期信號的對稱性1.縱軸對稱性
(1)如果原函數(shù)是偶函數(shù),則其傅里葉級數(shù)中只有直流和余弦分量(即偶函數(shù)之和仍然是偶函數(shù))。(2)如果原函數(shù)是奇函數(shù),則其傅里葉級數(shù)中只有正弦分量(即奇函數(shù)之和仍然是奇函數(shù))。滿足的周期為T的函數(shù);即平移半個周期后的信號與原信號關(guān)于橫軸對稱。定義:奇諧函數(shù)偶諧函數(shù)滿足的周期為T的函數(shù);即平移半個周期后信號與原信號重合。當前第17頁\共有201頁\編于星期四\10點2.橫軸對稱性(2)偶諧函數(shù)的傅里葉級數(shù)中只有偶次諧波分量。(1)奇諧函數(shù)的傅里葉級數(shù)中只有奇次諧波分量。如果原信號既不是奇諧函數(shù)也不是偶諧函數(shù),那么其傅里葉級數(shù)展開式中就會既包含有奇次諧波分量也包含有偶次諧波分量。!利用奇諧函數(shù)、偶諧函數(shù)性質(zhì)的時候,最好將其直流分量去掉,以免發(fā)生誤判。當前第18頁\共有201頁\編于星期四\10點已知奇諧函數(shù):例解當前第19頁\共有201頁\編于星期四\10點3.4常見周期信號的頻譜3.4.1頻譜的概念頻譜圖表示信號含有的各個頻率分量的幅度值。其橫坐標為頻率(單位為赫茲),縱坐標對應(yīng)各頻率分量的幅度值。
振幅頻譜(幅頻特性圖)表示信號含有的各個頻率分量的相位。其橫坐標為頻率;縱坐標對應(yīng)各頻率分量的相位(單位常用度或弧度)。
相位頻譜(相頻特性圖)當前第20頁\共有201頁\編于星期四\10點例,求頻譜解(1)單邊頻譜:
當前第21頁\共有201頁\編于星期四\10點(2)雙邊頻譜:包絡(luò)線頻譜圖隨參數(shù)的變化規(guī)律:
1)周期T不變,脈沖寬度變化當前第22頁\共有201頁\編于星期四\10點第一個過零點:譜線間隔情況1:第一個過零點為n=4。
在有值(譜線)當前第23頁\共有201頁\編于星期四\10點第一個過零點n=8
情況2:脈沖寬度縮小一倍第一個過零點增加一倍譜線間隔不變幅值減小一倍當前第24頁\共有201頁\編于星期四\10點第一個過零點為n=16。情況3:脈沖寬度再縮小一倍示意圖第一個過零點再增加一倍譜線間隔不變幅值再減小一倍當前第25頁\共有201頁\編于星期四\10點
由大變小,F(xiàn)n
第一過零點頻率增大,即所以稱為信號的帶寬,確定了帶寬。由大變小,頻譜的幅度變小。由于T
不變,譜線間隔不變,即不變。結(jié)論當前第26頁\共有201頁\編于星期四\10點
第一個過零點情況1:時,譜線間隔2)脈沖寬度不變,周期T變化
示意圖第一個過零點譜線間隔幅值:
當前第27頁\共有201頁\編于星期四\10點
第一個過零點
情況2:時,譜線間隔周期T擴展一倍示意圖譜線間隔減小一倍第一個過零點不變幅值減小一倍
當前第28頁\共有201頁\編于星期四\10點
第一個過零點情況3:時,譜線間隔周期T再擴展一倍示意圖譜線間隔再減小一倍幅值再減小一倍
第一個過零點不變當前第29頁\共有201頁\編于星期四\10點不變,F(xiàn)n的第一個過零點頻率不變,即帶寬不變。T
由小變大,諧波頻率成分豐富,且頻譜幅度變小。
T
時,譜線間隔0,這時:周期信號非周期信號;離散頻譜連續(xù)頻譜結(jié)論當前第30頁\共有201頁\編于星期四\10點典型周期信號的頻譜分析,可利用傅里葉級數(shù)或傅里葉變換。典型周期信號如下:1.周期矩形脈沖信號2.周期對稱方波信號3.周期鋸齒脈沖信號4.周期三角脈沖信號5.周期半波余弦信號6.周期全波余弦信號3.4.2常見周期信號的頻譜當前第31頁\共有201頁\編于星期四\10點1.周期矩形脈沖信號
(1)周期矩形脈沖信號的傅里葉級數(shù)求解設(shè)周期矩形脈沖:脈寬為,脈沖幅度為E,周期為T1當前第32頁\共有201頁\編于星期四\10點當前第33頁\共有201頁\編于星期四\10點(2)周期矩形脈沖信號的幅度、相位譜相位譜幅度譜當前第34頁\共有201頁\編于星期四\10點復(fù)數(shù)頻實數(shù)頻譜幅度譜與相位譜合并當前第35頁\共有201頁\編于星期四\10點
周期對稱方波信號是周期矩形信號的一種特殊情況,對稱方波信號有兩個特點:(1)是正負交替的信號,其直流分量a0等于零;(2)它的脈寬恰等于周期的一半,即t
=T1/2。2.周期對稱方波信號的傅里葉級數(shù)當前第36頁\共有201頁\編于星期四\10點當前第37頁\共有201頁\編于星期四\10點幅度譜相位譜當前第38頁\共有201頁\編于星期四\10點3.周期鋸齒脈沖信號的傅里葉級數(shù)求解周期鋸齒脈沖信號,是奇函數(shù)故,可求出傅里葉級數(shù)系數(shù)bn。如何求bn留作思考!當前第39頁\共有201頁\編于星期四\10點其傅里葉級數(shù)表達式為:此信號的頻譜只包含正弦分量,諧波的幅度以1/n的規(guī)律收斂。當前第40頁\共有201頁\編于星期四\10點4.周期三角脈沖信號的傅里葉級數(shù)求解周期三角脈沖信號,是偶函數(shù),故,可求出傅里葉級數(shù)系數(shù)a0
、an。如何求bn留作思考!當前第41頁\共有201頁\編于星期四\10點此信號的頻譜只包含直流、基波及奇次諧波分量,諧波的幅度以1/n2的規(guī)律收斂。其傅里葉級數(shù)表達式為:當前第42頁\共有201頁\編于星期四\10點5.周期半波余弦信號的傅里葉級數(shù)求解周期半波余弦信號,是偶函數(shù),故,可求出傅里葉級數(shù)系數(shù)a0
、an。如何求bn留作思考!當前第43頁\共有201頁\編于星期四\10點此信號的頻譜只包含直流、基波及偶次諧波分量,諧波的幅度以1/n2的規(guī)律收斂。其傅里葉級數(shù)表達式為:當前第44頁\共有201頁\編于星期四\10點6.周期全波余弦信號的傅里葉級數(shù)求解周期全波余弦信號,是偶函數(shù)。令余弦信號為則,全波余弦信號為:當前第45頁\共有201頁\編于星期四\10點此信號的頻譜只包含直流、基波及偶次諧波分量,諧波的幅度以1/n2的規(guī)律收斂。其傅里葉級數(shù)表達式為:當前第46頁\共有201頁\編于星期四\10點
如果用有限傅里葉級數(shù)代替無窮傅里葉級數(shù)表示信號,必然引進一個誤差。如果完全逼近,則n=∞.
實際中,n=N,N是有限整數(shù)。 如果N愈接近n
,則其均方誤差愈小 若用2N+1項逼近,則3.4.3吉布斯效應(yīng)當前第47頁\共有201頁\編于星期四\10點誤差函數(shù)和均方誤差誤差函數(shù)均方誤差當前第48頁\共有201頁\編于星期四\10點對稱方波,是偶函數(shù)且奇諧函數(shù)。所以其只有奇次諧波的余弦項。例-E/2T1/4-T1/4tE/2o當前第49頁\共有201頁\編于星期四\10點對稱方波有限項的傅里葉級數(shù)
(N=1、2、3時的逼近波形)(3)N=3:(1)N=1:(2)N=2:-0.5-0.4-0.3-0.2-0.100.10.20.30.40.5-1-0.8-0.6-0.4-0.200.20.40.60.81當前第50頁\共有201頁\編于星期四\10點有限項的N越大,誤差越小例如:N=9-0.5-0.4-0.3-0.2-0.100.10.20.30.40.5-1-0.8-0.6-0.4-0.200.20.40.60.81當前第51頁\共有201頁\編于星期四\10點N越大,越接近方波快變信號,高頻分量,主要影響跳變沿;慢變信號,低頻分量,主要影響頂部;任一分量的幅度或相位發(fā)生相對變化時,波形將會失真;有吉伯斯現(xiàn)象發(fā)生。結(jié)論當前第52頁\共有201頁\編于星期四\10點以周期矩形脈沖為例:只需修改上面程序(3.2.3節(jié))中函數(shù)CTFShchsym.m的內(nèi)容,需注意:因周期信號頻譜是離散的,故在繪制頻譜時采用stem而非plot命令。諧波階數(shù)取還需用到MATLAB的反褶函數(shù)fliplr來實現(xiàn)頻譜的反褶。上機練習!3.4.4周期信號的MATLAB仿真實現(xiàn)當前第53頁\共有201頁\編于星期四\10點對周期矩形脈沖信號,有3.5非周期性信號的頻譜3.5.1從傅里葉級數(shù)到傅里葉變換當前第54頁\共有201頁\編于星期四\10點譜線間隔ˉ譜線間隔0?
從物理概念考慮:信號的能量存在,其頻譜分布的規(guī)律就存在。由于1.從周期信號到非周期信號——從傅里葉級數(shù)到傅里葉變換當前第55頁\共有201頁\編于星期四\10點信號的頻譜分布是不會隨著信號的周期的無限增大而消失的。T→∞時,信號的頻譜分布仍然存在。
結(jié)論無限多個無窮小量之和仍可等于一個有限量。
從數(shù)學角度來看:當前第56頁\共有201頁\編于星期四\10點所以,傅里葉級數(shù)展開為:為頻譜密度函數(shù)。定義當前第57頁\共有201頁\編于星期四\10點周期信號:頻譜是離散的,且各頻率分量的復(fù)振幅為有限值。非周期信號:頻譜是連續(xù)的,且各頻率分量的復(fù)振幅為無限小量。
所以,對非周期信號來說,僅僅去研究那無限小量是沒有意義的,其頻譜不能直接引用復(fù)振幅的概念。!當前第58頁\共有201頁\編于星期四\10點2.傅里葉逆變換——怎樣用計算當前第59頁\共有201頁\編于星期四\10點當前第60頁\共有201頁\編于星期四\10點3.
正、逆傅里葉變換反變換正變換!傅里葉變換對的形式并不唯一傅里葉變換存在的充分條件:用廣義函數(shù)的概念,允許奇異函數(shù)也能滿足上述條件,因而象階躍、沖激一類函數(shù)也存在傅里葉變換。當前第61頁\共有201頁\編于星期四\10點4.傅里葉變換的另外幾種形式當前第62頁\共有201頁\編于星期四\10點當前第63頁\共有201頁\編于星期四\10點
本節(jié)主要介紹以下幾種典型的非周期信號的頻譜。1.單邊指數(shù)信號6.符號函數(shù)2.雙邊指數(shù)信號7.沖激函數(shù)傅里葉變換對3.奇雙邊指數(shù)信號8.沖激偶的傅里葉變換4.矩形脈沖信號9.階躍信號的傅里葉變換5.鐘形脈沖信號10.復(fù)正弦信號3.5.2常見信號的傅里葉變換當前第64頁\共有201頁\編于星期四\10點1.單邊指數(shù)信號的傅里葉變換
其傅里葉變換為:當前第65頁\共有201頁\編于星期四\10點利用傅里葉變換定義公式當前第66頁\共有201頁\編于星期四\10點時域波形單邊指數(shù)信號的頻譜如下:頻域頻譜當前第67頁\共有201頁\編于星期四\10點2.
雙邊指數(shù)信號的傅里葉變換
其傅里葉變換為:(正實函數(shù))當前第68頁\共有201頁\編于星期四\10點利用傅里葉變換定義公式求解過程當前第69頁\共有201頁\編于星期四\10點時域波形雙邊指數(shù)信號的頻譜如下:頻域頻譜相位當前第70頁\共有201頁\編于星期四\10點3.奇雙邊指數(shù)信號的傅里葉變換當前第71頁\共有201頁\編于星期四\10點頻域頻譜時域波形頻譜如下:當前第72頁\共有201頁\編于星期四\10點4.矩形脈沖信號的傅里葉變換實函數(shù)當前第73頁\共有201頁\編于星期四\10點時域有限的矩形脈沖信號,在頻域上是無限分布。常認為信號占有頻率范圍(頻帶B)為當前第74頁\共有201頁\編于星期四\10點5.鐘形脈沖信號的傅里葉變換
(高斯脈沖)其傅里葉變換為:(正實函數(shù))當前第75頁\共有201頁\編于星期四\10點因為鐘形脈沖信號是一正實函數(shù),所以其相位頻譜為零。時域波形頻域頻譜當前第76頁\共有201頁\編于星期四\10點6.符號函數(shù)的傅里葉變換其傅里葉變換為:(純虛數(shù)函數(shù))當前第77頁\共有201頁\編于星期四\10點
符號函數(shù)不滿足絕對可積條件,但它卻存在傅里葉變換。
采用符號函數(shù)與雙邊指數(shù)衰減函數(shù)相乘,求出奇雙邊指數(shù)的頻譜,再取極限,從而求得符號函數(shù)的頻譜。當前第78頁\共有201頁\編于星期四\10點7.沖激函數(shù)傅里葉變換對直流信號的傅里葉變換是沖激函數(shù)!當前第79頁\共有201頁\編于星期四\10點均勻譜或白色譜1Oto1OtO當前第80頁\共有201頁\編于星期四\10點8.沖激偶的傅里葉變換
記為
同理,有當前第81頁\共有201頁\編于星期四\10點9.階躍信號的傅里葉變換
幅頻特性
相頻特性
u(t)Ot1O當前第82頁\共有201頁\編于星期四\10點10.復(fù)正弦信號的傅里葉變換為一位于且強度為的沖激函數(shù)。結(jié)論O當前第83頁\共有201頁\編于星期四\10點升余弦脈沖信號的傅里葉變換
補充升余弦脈沖信號:其傅里葉變換為:(實數(shù))其頻譜由三項構(gòu)成,均為矩形脈沖頻譜,只是有兩項沿頻率軸左、右平移了當前第84頁\共有201頁\編于星期四\10點利用傅里葉變換定義公式化簡得:求解過程當前第85頁\共有201頁\編于星期四\10點3.5.3MATLAB仿真實現(xiàn)MATLAB數(shù)學工具箱SymbolicMathToolbox提供了能直接求解傅氏變換及逆變換的函數(shù)fourier()和ifourier()。(1)傅里葉變換調(diào)用格式1)F=fourier(f)
2)F=fourier(f,v)
3)F=fourier(f,u,v)
當前第86頁\共有201頁\編于星期四\10點(2)傅里葉逆變換調(diào)用格式1)f=ifourier(F)
2)f=ifourier(F,u)
3)f=ifourier(F,v,u)
在調(diào)用fourier()和ifourier()之前,要用syms命令對所用到的變量進行說明,即將這些變量說明成符號變量。對fourier()中的函數(shù)f及ifourier()中的函數(shù)F也要用符號定義符syms將f或F說明為符號表達式;若f或F是MATLAB中的通用函數(shù)表達式,則不必用syms加以說明。
!書中例題可上機練習當前第87頁\共有201頁\編于星期四\10點時間函數(shù)頻譜某種運算變化變化運算3.6傅里葉變換的性質(zhì)1.傅里葉變換的唯一性傅里葉變換的唯一性表明了信號的時域和頻域是一一對應(yīng)的關(guān)系。!當前第88頁\共有201頁\編于星期四\10點2.對稱性(頻域、時域呈現(xiàn)的對應(yīng)關(guān)系)若,則即證明證畢當前第89頁\共有201頁\編于星期四\10點如沖激和直流函數(shù)的頻譜的對稱性就是一例子:!若為偶函數(shù),則或即f(t)為偶函數(shù),則時域和頻域完全對稱。F(ω)ωOOOOF(t)ωtt(1)沖激函數(shù)當前第90頁\共有201頁\編于星期四\10點(2)直流函數(shù)1OO1OO當前第91頁\共有201頁\編于星期四\10點FT對稱性t
換成ωf換成F1換成當前第92頁\共有201頁\編于星期四\10點例解當前第93頁\共有201頁\編于星期四\10點
3.線性(疊加性、均勻性)
相加信號頻譜=各個單獨信號的頻譜之和證明推論當前第94頁\共有201頁\編于星期四\10點求f(t)的傅里葉變換例解當前第95頁\共有201頁\編于星期四\10點4.奇偶虛實性無論f(t)是實函數(shù)還是復(fù)函數(shù),下面四式均成立:時域反摺頻域也反摺時域共軛頻域共軛并且反摺更廣泛地講,函數(shù)f(t)是t的復(fù)數(shù);令虛部實部當前第96頁\共有201頁\編于星期四\10點整理上式得出:當前第97頁\共有201頁\編于星期四\10點把式(2)、(3)代入式(1)整理得:當前第98頁\共有201頁\編于星期四\10點性質(zhì)1實數(shù)函數(shù)設(shè)f(t)是t的實函數(shù),則的實部與虛部將分別等于f2(t)=0,f(t)=f1(t),則有特殊情況討論:從上式可以得出結(jié)論:當前第99頁\共有201頁\編于星期四\10點實信號的頻譜具有很重要的特點,正負頻率部分的頻譜是相互共軛的.特點偶函數(shù)奇函數(shù)當前第100頁\共有201頁\編于星期四\10點性質(zhì)2虛函數(shù)設(shè)f(t)是純虛函數(shù)則反之也正確.因而是的奇函數(shù),而是的偶函數(shù)。當前第101頁\共有201頁\編于星期四\10點性質(zhì)3實偶函數(shù)實偶函數(shù)的傅里葉變換仍為實偶函數(shù)結(jié)論反之,若一實函數(shù)f(t)的傅里葉積分也是實函數(shù),則f(t)必是偶函數(shù)。推論設(shè)f(t)是t的實偶函數(shù),則當前第102頁\共有201頁\編于星期四\10點例解tOf(t)F(ω)tO當前第103頁\共有201頁\編于星期四\10點性質(zhì)4奇實函數(shù)設(shè)f(-t)=-f(t),則:反之,若一實函數(shù)f(t)付里葉積分是一純虛函數(shù),則f(t)必是奇函數(shù)。實奇函數(shù)的傅里葉變換則為虛奇函數(shù)結(jié)論推論當前第104頁\共有201頁\編于星期四\10點例解tOf(t)ωO|F(ω)|ωOF(ω)ωOφ(ω)π/2-π/2當前第105頁\共有201頁\編于星期四\10點同理可以推出:若是虛函數(shù)且還是偶函數(shù),則的傅里葉變換為虛偶函數(shù)。性質(zhì)5:性質(zhì)6:若是虛函數(shù)且還是奇函數(shù),則的傅里葉變換為實奇函數(shù)。讀者可以仿照性質(zhì)3、性質(zhì)4給予簡單證明當前第106頁\共有201頁\編于星期四\10點如果將按照奇偶來劃分當前第107頁\共有201頁\編于星期四\10點當前第108頁\共有201頁\編于星期四\10點
由此可看出,此時F(ω)是虛函數(shù)且是ω的奇函數(shù)。對于f(t)為虛函數(shù)的情況,分析方法同上,結(jié)論相反。上述討論的結(jié)果如下:f(t)F(ω)實一般實部偶、虛部奇、幅頻偶、相頻奇偶實部偶奇虛部奇虛偶虛部偶奇實部奇當前第109頁\共有201頁\編于星期四\10點5.尺度變換特性時間波形的擴展和壓縮,將影響頻譜的波形對于一個實常數(shù)a,其關(guān)系為令x=at,則dx=adt,代入上式可得則證明時域壓縮則頻域展寬;展寬時域則頻域壓縮。結(jié)論當前第110頁\共有201頁\編于星期四\10點時域中的壓縮(擴展)等于頻域中的擴展(壓縮)f(t/2)縮tO縮f(2t)縮tO縮1展展O展展O當前第111頁\共有201頁\編于星期四\10點尺度變換變換后語音信號的變化f(t)f(1.5t)f(0.5t)0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
-0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0.5
一段語音信號(“對了”)。抽樣頻率=22050Hzf(t)f(t/2)f(2t)例當前第112頁\共有201頁\編于星期四\10點定義若高度為的矩形與的面積相等,則稱矩形寬度為等效頻帶寬度。等效頻帶寬度若高度為的矩形與的面積相等,則稱矩形寬度為等效脈沖寬度。等效脈沖寬度當前第113頁\共有201頁\編于星期四\10點信號的等效脈沖寬度和占有的等效頻帶寬度成反比。結(jié)論當前第114頁\共有201頁\編于星期四\10點(2)脈寬×頻寬=常數(shù)(1)函數(shù)f(at)表示函數(shù)f(t)在時間刻度上壓縮a倍,同樣
表示函數(shù)在頻率刻度上擴展a倍,因此比例性表明,在時間域的壓縮等于在頻率域中的擴展反之亦然。上述反比特性的物理意義:當前第115頁\共有201頁\編于星期四\10點6.時移特性若
則證明令則當前第116頁\共有201頁\編于星期四\10點同理可推得:帶有尺度變換的時移特性令a<0時加絕對值當前第117頁\共有201頁\編于星期四\10點單矩形脈沖的頻譜為有如下三脈沖信號:其頻譜為求三脈沖信號的頻譜例解當前第118頁\共有201頁\編于星期四\10點頻移特性與時移特性對稱(這里ω0為實常量)7.頻移特性證明當前第119頁\共有201頁\編于星期四\10點若則同理可得當前第120頁\共有201頁\編于星期四\10點矩形脈沖信號f(t)與余弦信號cosω0
t相乘后信號的頻譜函數(shù)。利用頻移特性可得寬度為的矩形脈沖信號對應(yīng)的頻譜函數(shù)為例解當前第121頁\共有201頁\編于星期四\10點0A2/tt2/t-)(tfowF(ω)F(ω)oww0-w02/tAt2/t-ttfcos)(w0當前第122頁\共有201頁\編于星期四\10點8.微分特性
(1)時域(2)頻域,則若若,則證明(略)當前第123頁\共有201頁\編于星期四\10點9.積分特性若(1)時域積分則,則若當前第124頁\共有201頁\編于星期四\10點(2)頻域積分若則當前第125頁\共有201頁\編于星期四\10點10.卷積定理(1)時域卷積定理
設(shè)有兩個時間函數(shù)f1(t)和f2(t),它們分別對應(yīng)的頻譜函數(shù)為F1(ω)和F2(ω):若則可簡記為當前第126頁\共有201頁\編于星期四\10點證明式中當前第127頁\共有201頁\編于星期四\10點(2)頻域卷積定理若則可簡記為當前第128頁\共有201頁\編于星期四\10點1.用頻移特性3.7周期信號的傅里葉變換
3.7.1正、余弦信號的傅里葉變換令
由頻移特性當前第129頁\共有201頁\編于星期四\10點oo余弦信號頻譜
正弦信號頻譜當前第130頁\共有201頁\編于星期四\10點2.用極限方法有限長余弦看成矩形乘以。對求極限即可得到無限長余弦信號。當前第131頁\共有201頁\編于星期四\10點1-1當前第132頁\共有201頁\編于星期四\10點3.7.2一般周期信號的傅里葉變換周期信號式中當前第133頁\共有201頁\編于星期四\10點
求單位沖激序列的傅里葉變換
例解當前第134頁\共有201頁\編于星期四\10點FSFTOO(1)O1O當前第135頁\共有201頁\編于星期四\10點小結(jié)周期信號傅里葉變換的特點:
(1)周期信號可求取傅里葉變換和傅里葉級數(shù),但非周期信號則只能求傅里葉變換;(2)非周期信號的頻譜是連續(xù)譜,它的大小是有限值;(3)周期信號的頻譜是離散譜,其幅值是無窮大(含譜密度概念),它的大小用沖激表示;是的包絡(luò)的倍;是單個復(fù)諧波成份的復(fù)振幅,而是單位帶寬內(nèi)所有復(fù)諧波成分的合的復(fù)振幅值;(6)的單位是伏特或安培,而的單位則是(伏特/赫,安培/赫);(7)代表的是信號的功率分配,而代表了信號的能量分布。
當前第136頁\共有201頁\編于星期四\10點3.8抽樣定理取樣目的及所遇到的問題:數(shù)字信號處理系統(tǒng)簡單框圖當前第137頁\共有201頁\編于星期四\10點(1)取樣后離散信號的頻譜是什么樣的?它與未被取樣的連續(xù)信號的頻譜有什么關(guān)系?(2)連續(xù)信號被取樣后,是否保留了原信號的所有信息?即在什么條件下,可以從取樣的信號還原成原始信號?問題:連續(xù)信號離散信號抽樣還原(有條件)
當前第138頁\共有201頁\編于星期四\10點抽樣時域抽樣頻域抽樣自然抽樣(矩形抽樣)理想抽樣(沖激抽樣)平頂抽樣低通(掌握)帶通(了解)當前第139頁\共有201頁\編于星期四\10點此時的抽樣脈沖p(t)是矩形。由于fs(t)=f(t)p(t)抽樣信號在抽樣期間脈沖頂部隨f(t)變化,故這種抽樣稱為“自然抽樣”。時域抽樣簡圖抽樣過程可以看成由原信號f(t)和一個開關(guān)函數(shù)p(t)的乘積來描述。抽樣信號為1.矩形脈沖抽樣(自然抽樣)3.8.1時域抽樣連續(xù)信號f(t)抽樣脈沖p(t)量化編碼數(shù)字信號抽樣信號當前第140頁\共有201頁\編于星期四\10點由于p(t)是周期信號,可知p(t)的傅氏變換為:令模擬帶限信號傅氏變換為,即取樣脈沖序列的傅氏變換為設(shè)取樣為均勻抽樣,周期為Ts,則取樣角頻率為(1)抽樣信號頻譜推導式中:當前第141頁\共有201頁\編于星期四\10點由頻域卷積定理得,時域相乘的傅氏變換等于它們的頻譜在頻域里相卷積。代入上面計算出的p(t)信號在時域被抽樣后,它的頻譜是連續(xù)信號的頻譜以取樣角頻率為間隔周期地重復(fù)而得到的。在重復(fù)過程中,幅度被取樣脈沖p(t)的傅里葉系數(shù)所加權(quán),加權(quán)系數(shù)取決于取樣脈沖序列的形狀。
!當前第142頁\共有201頁\編于星期四\10點當抽樣脈沖為矩形抽樣脈沖時,幅度以Sa函數(shù)的規(guī)律變化。從的頻譜圖可見,抽樣后的信號頻譜包括有原信號的頻譜以及無限個經(jīng)過平移的原信號的頻譜,平移的頻率為抽樣頻率及其各次諧波頻率。且平移后的頻譜幅值隨頻率而呈Sa函數(shù)分布。因矩形脈沖占空系數(shù)很小,故其頻譜所占的頻帶幾乎無限寬。!抽樣后頻譜o1o抽樣前頻譜當前第143頁\共有201頁\編于星期四\10點(1)如果取樣脈沖寬度與系統(tǒng)中各時間常數(shù)相比十分小的時候,這個沖激函數(shù)的假定將是一個很好的近似,它將使分析簡化。(2)通過沖激取樣的方法來表明數(shù)字信號,在數(shù)字信號處理中有著廣泛的應(yīng)用。(點抽樣;均勻抽樣)取樣率必須選得大于信號頻譜最高頻率的兩倍。(2)抽樣頻率的選擇!當前第144頁\共有201頁\編于星期四\10點(3)矩形脈沖抽樣of(t)oooo點乘卷積oP(t)當前第145頁\共有201頁\編于星期四\10點2.沖激抽樣(理想抽樣)若取樣脈沖是沖激序列,此時稱為“沖激取樣”或“理想抽樣”。設(shè)Ts為取樣間隔,則取樣脈沖為因T(t)的傅氏系數(shù)為:故沖激取樣信號的頻譜為:當前第146頁\共有201頁\編于星期四\10點周期單位沖激序列的FT:當前第147頁\共有201頁\編于星期四\10點ooooo當前第148頁\共有201頁\編于星期四\10點抽樣前信號頻譜抽樣后信號頻譜由于沖激序列的傅里葉系數(shù)Pn為常數(shù),所以是以為周期等幅地重復(fù),如下圖所示:當前第149頁\共有201頁\編于星期四\10點(1)時域理想抽樣的傅里葉變換下面對矩形脈沖抽樣和沖激抽樣進行比較和小結(jié):FT相乘
相卷積FT當前第150頁\共有201頁\編于星期四\10點(2)關(guān)于非理想抽樣非理想抽樣理想抽樣比較當前第151頁\共有201頁\編于星期四\10點理想抽樣和非理想抽樣的對比當前第152頁\共有201頁\編于星期四\10點結(jié)論矩形脈沖抽樣和沖激抽樣的重要差別就在于頻譜分量的性質(zhì)不同。矩形脈沖抽樣所導出的頻譜分量的幅度是按包絡(luò)的變化規(guī)律隨頻率而下降的,而理想抽樣所導出的頻譜卻有著相同的幅度,不隨頻率而減少;是信號本身固有的;是人為的;稱為奈奎斯特抽樣頻率;稱為奈奎斯特抽樣間隔;抽樣頻率為奈奎斯特抽樣頻率的兩倍或兩倍以上時,抽樣信號的頻譜才不會發(fā)生混疊。只有這樣才能無失真地恢復(fù)出原信號。
當前第153頁\共有201頁\編于星期四\10點3.抽樣定理定理3.1設(shè)有一連續(xù)信號f(t),它的頻譜則只要取樣間隔滿足,連續(xù)信號f(t)就可表示為:當前第154頁\共有201頁\編于星期四\10點
由于f(t)的頻帶有限,而時域取樣必導致頻域周期。在周期重復(fù)時,為保證內(nèi)為,則重復(fù)周期應(yīng)滿足,將取樣信號通過截止頻率為的理想低通濾波器,便能從中恢復(fù),也就是說,能從取樣信號fs(t)中恢復(fù)出原始信號
f(t)。證明OO當前第155頁\共有201頁\編于星期四\10點由時域卷積定理知:復(fù)原始信號f(t)。設(shè)、,則當通過截止頻率為的理想低通濾波器時,濾波器的響應(yīng)頻譜為,顯然濾波器的作用等效于一個開關(guān)函數(shù)同的相乘。即當前第156頁\共有201頁\編于星期四\10點當前第157頁\共有201頁\編于星期四\10點則(內(nèi)插公式)證畢而由傅里葉變換的對稱性可知:當前第158頁\共有201頁\編于星期四\10點由于定理二是討論由離散信號恢復(fù)成連續(xù)信號,所以又稱重建定理。
設(shè)f(t)是一帶限連續(xù)信號,最高頻率為,根據(jù)定理一對f(t)進行抽樣,得f(nT),則f(nT)經(jīng)過一個頻率響應(yīng)為如圖的理想低通濾波器后便得到f(t).
(自證)定理3.210當前第159頁\共有201頁\編于星期四\10點頻域抽樣定理若信號為時限信號,它集中在的時間范圍內(nèi),若在頻域中,以不大于的頻率間隔對的頻譜進行抽樣,則抽樣后的頻譜可以唯一地表示原信號。3.8.2頻域抽樣
頻域有限時域有限時域無限頻域無限但反之不一定成立如:白噪聲時域取樣與頻域取樣的對稱性f(t)以為周期重復(fù)f(t)以T為周期重復(fù)當前第160頁\共有201頁\編于星期四\10點根據(jù)時域和頻域?qū)ΨQ性,可推出頻域抽樣定理偶函數(shù)變量置換當前第161頁\共有201頁\編于星期四\10點頻域取樣后的時間函數(shù)相乘卷積當前第162頁\共有201頁\編于星期四\10點當前第163頁\共有201頁\編于星期四\10點抽樣定理小結(jié)時域?qū)θ拥刃в陬l域?qū)χ貜?fù)時域取樣間隔不大于。頻域?qū)Τ闃拥刃в跁r域?qū)χ貜?fù)頻域取樣間隔不大于。滿足取樣定理,則不會產(chǎn)生混疊。當前第164頁\共有201頁\編于星期四\10點3.9功率頻譜與能量頻譜3.9.1周期信號的功率譜
周期性信號的能量無窮大,功率有限,因此可從功率方面進行研究。(1)正交分解與信號功率對周期信號f(t)做正交分解,有:則總功率為當前第165頁\共有201頁\編于星期四\10點式中,為正交信號分量的功率如果信號在非正交函數(shù)集中分解后,信號的功率并不滿足疊加性(如泰勒級數(shù)展開)。注意利用信號傅里葉級數(shù)分解后的信號分量,計算原信號的功率
例因為傅里葉級數(shù)分解是正交分解
解當前第166頁\共有201頁\編于星期四\10點時域求得的信號功率頻域求得的信號功率(1)周期信號的表示形式對于周期信號,在時域中求得的信號功率=頻域中的信號各諧波分量功率之和。這就是Parseval定理在周期信號時的表示形式帕塞瓦爾定理:當前第167頁\共有201頁\編于星期四\10點(1)對于單邊功率譜,在每個不等于零(非直流)的頻率上,子信號功率,直流信號的功率為
將周期性信號在各個頻率上分量的功率大小,用圖的方法表示出。其橫坐標為頻率,縱坐標為信號分量的功率,該圖形稱為功率譜圖。功率譜與頻譜非常相似,但有稍許不同:(2)對于雙邊功率譜,在每個頻率點上,子信號功率為:(3)功率譜只有大?。ǚ龋瑳]有相位。(3)周期性信號的功率譜當前第168頁\共有201頁\編于星期四\10點3.9.2能量頻譜對于非周期信號而言,其周期為無窮,但能量有限,所以它的功率為零,故我們只可以從能量角度研究對其進行研究。非周期信號在各個頻率上的實際分量大小為無窮小,只能用能量密度譜描述單位頻帶內(nèi)的信號能量。:(1)能量譜信號總能量:當前第169頁\共有201頁\編于星期四\10點在時域中,卷積積分的方法可求得系統(tǒng)的零狀態(tài)響應(yīng)。它是以沖激信號作為基本信號,將任意連續(xù)信號分解為無窮多個沖激函數(shù)的加權(quán)和,每個沖激函數(shù)對系統(tǒng)的響應(yīng)疊加起來,就得到的零狀態(tài)響應(yīng)。本節(jié)中,正弦信號或諧波信號作為基本信號,將信號分解為無窮多個正弦信號或虛指數(shù)的加權(quán)和。這些信號作用于系統(tǒng)時所得到的響應(yīng)之疊加即為系統(tǒng)的零狀態(tài)響應(yīng)。
3.10系統(tǒng)頻域分析法當前第170頁\共有201頁\編于星期四\10點在時域中其中:H(j)=FT[h(t)]稱頻域系統(tǒng)函數(shù)。則h(t)=IFT[H(j)]
也稱系統(tǒng)的頻率響應(yīng)。稱為幅頻特性,稱相頻特性。輸入的頻譜響應(yīng)的頻譜3.10.1周期性信號的穩(wěn)態(tài)響應(yīng)在頻域中當前第171頁\共有201頁\編于星期四\10點式中為h(t)的傅里葉變換,頻域系統(tǒng)函數(shù)可見,系統(tǒng)的零狀態(tài)響應(yīng)yzs(t)是等于激勵ejt
乘以加權(quán)函數(shù)H(j),此加權(quán)函數(shù)H(j)即為頻域系統(tǒng)函數(shù),亦即為h(t)的傅里葉變換。設(shè)激勵f(t)=ejt,則系統(tǒng)零狀態(tài)響應(yīng)為即有
h(t)H(j)!當前第172頁\共有201頁\編于星期四\10點周期信號激勵下的系統(tǒng)響應(yīng)正弦信號激勵時的響應(yīng)設(shè)輸入信號為正弦信號,即所以當前第173頁\共有201頁\編于星期四\10點頻域分析的方法的求解步驟為:先求出輸入信號的頻譜F(j)和頻域系統(tǒng)函數(shù)H(j)由于y(t)=h(t)f(t),利用連續(xù)時間非周期信號的傅里葉變換的時域卷積性質(zhì),有
Y(j)=H(j)F(j),求出輸出信號的頻譜將Y(j)進行傅里葉反變換就得到y(tǒng)(t)3.10.2非周期信號通過線性系統(tǒng)的零狀態(tài)響應(yīng)補充RC電路,若輸入信號為矩形脈沖波如圖所示。求系統(tǒng)響應(yīng)。矩形脈沖波當前第174頁\共有201頁\編于星期四\10點輸入信號的頻譜為解RC電路的系統(tǒng)函數(shù)為因此,輸出頻譜為因為當前第175頁\共有201頁\編于星期四\10點令1/RC=a,可得當前第176頁\共有201頁\編于星期四\10點用Matlab畫出的輸出信號的頻譜如圖所示。圖中畫出了帶寬和的兩種情況
RC電路輸出的幅度頻譜當前第177頁\共有201頁\編于星期四\10點RC電路輸出的時域波形
當前第178頁\共有201頁\編于星期四\10點由于RC電路的低通特性,高頻分量有較大的衰減,故輸出波形不能迅速變化。輸出波形不再是矩形脈沖信號,而是以指數(shù)規(guī)律逐漸上升和下降。當帶寬增加時,允許更多的高頻分量通過,輸出波形的上升與下降時間縮短,和輸入信號波形相比,失真減小。結(jié)論當前第179頁\共有201頁\編于星期四\10點為起始頻率,,1.h=freqs(b,a,w)式中對應(yīng)于式(3-159)中的向量,對應(yīng)于式(3-159)中的向量使用形式如為終止頻率,為頻率取樣間隔。向量返回在頻率向量上的系統(tǒng)函數(shù)樣值。,w為頻率取值范圍,2.[h,w]=freqs(b,a)該調(diào)用格式將計算默認頻率范圍內(nèi)200個頻率點的系統(tǒng)函數(shù)樣值,并賦值給返回變量,200個頻率點記錄在w中。3.10.3MATLAB仿真實現(xiàn)當前第180頁\共有201頁\編于星期四\10點右圖是常見的用RLC元件構(gòu)成的某系統(tǒng)電路。設(shè)4.freqs(b,a)
該調(diào)用格式并不返回系統(tǒng)函數(shù)樣值,而是以對數(shù)坐標的方式繪出系統(tǒng)的幅頻響應(yīng)和相頻響應(yīng)。3.[h,w]=freqs(b,a,n)
該調(diào)用格式將計算默認頻率范圍內(nèi)200個頻率點的系統(tǒng)函數(shù)樣值,并賦值給返回變量,個頻率點記錄在w中。,試用MATLAB的freqs()函數(shù)求解該系統(tǒng)頻率響應(yīng)并繪圖。例
,,RLC二階低通濾波器電路圖當前第181頁\共有201頁\編于星期四\10點根據(jù)原理圖,容易寫出系統(tǒng)的頻率響應(yīng)為:式中,將R、L、C的值代入的表達式,得:解當前第182頁\共有201頁\編于星期四\10點b=[001];a=[0.080.41];%生成向量b,a[h,w]=freqs(b,a,100);%求系統(tǒng)頻響特性h1=abs(h);%求幅頻響應(yīng)h2=angle(h);%求相頻響應(yīng)subplot(211);plot(w,h1);gridxlabel('角頻率(W)');ylabel('幅度');title('H(jw)的幅頻特性');subplot(212);plot(w,h2*180/pi);gridxlabel('角頻率(w)');ylabel
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年魯教版二年級語文下冊月考試卷含答案
- 2025年魯人版九年級英語下冊月考試卷
- 2025年外研版2024選修5歷史下冊月考試卷含答案
- 2025年魯教五四新版五年級英語上冊階段測試試卷含答案
- 2025年度污水處理設(shè)備定制化生產(chǎn)與安裝合同3篇
- 2025年粵人版二年級數(shù)學上冊月考試卷
- 2025年滬教版七年級物理下冊階段測試試卷
- 2025年度環(huán)保型沙子購銷合作協(xié)議3篇
- 2024物業(yè)服務(wù)提供商與小區(qū)業(yè)主委員會管理委托合同
- 2025年蘇教版四年級數(shù)學上冊月考試卷含答案
- 上海教育出版社 藝術(shù) 八年級上冊第三單元 鄉(xiāng)音鄉(xiāng)韻 京腔京韻系鄉(xiāng)情 教學設(shè)計
- 人教版(2024新教材)七年級上冊數(shù)學第一章《有理數(shù)》單元測試卷(含答案)
- 商業(yè)倫理與企業(yè)社會責任(山東財經(jīng)大學)智慧樹知到期末考試答案章節(jié)答案2024年山東財經(jīng)大學
- 《普通動物學》課件P脊索動物門(5)鳥綱
- 《色彩基礎(chǔ)知識》PPT課件(詳解)
- 污水管道工程監(jiān)理控制要點
- 潮流能發(fā)電及潮流能發(fā)電裝置匯總
- 課堂教學能力提升(課堂PPT)
- vienna整流器交錯并聯(lián)三相pfc電路
- 標準活動板房設(shè)計說明(共7頁)
- 哈爾濱師范大學與堪培拉大學合作培養(yǎng)
評論
0/150
提交評論