高中數(shù)學(xué)-綜合法與分析法教學(xué)設(shè)計學(xué)情分析教材分析課后反思_第1頁
高中數(shù)學(xué)-綜合法與分析法教學(xué)設(shè)計學(xué)情分析教材分析課后反思_第2頁
高中數(shù)學(xué)-綜合法與分析法教學(xué)設(shè)計學(xué)情分析教材分析課后反思_第3頁
高中數(shù)學(xué)-綜合法與分析法教學(xué)設(shè)計學(xué)情分析教材分析課后反思_第4頁
高中數(shù)學(xué)-綜合法與分析法教學(xué)設(shè)計學(xué)情分析教材分析課后反思_第5頁
已閱讀5頁,還剩3頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

PAGE3PAGE2.2.1綜合法與分析法(一)教學(xué)目標1、知識與技能:(1)了解直接證明的兩種基本方法:綜合法和分析法;(2)了解綜合法和分析法的思維過程和特點.2、過程與方法(1)通過對實例的分析、歸納與總結(jié)的過程,發(fā)展學(xué)生的理性思維能力;(2)通過實際演練,使學(xué)生體會證明的必要性,并發(fā)展他們的分析問題、解決問題的能力.3、情感態(tài)度與價值觀通過本節(jié)課的學(xué)習(xí),了解數(shù)學(xué)直接證明的兩種基本方法,感受邏輯證明在數(shù)學(xué)及日常生活中的作用,養(yǎng)成言之有理、論證有據(jù)的好習(xí)慣,發(fā)展學(xué)生的思維能力,逐步形成理性思維和科學(xué)精神。(二)教學(xué)重點與難點重點:綜合法和分析法的思維過程和特點.難點:綜合法和分析法的應(yīng)用.(三)教學(xué)方法以教師為主導(dǎo),學(xué)生為主體,以能力發(fā)展為目標,從學(xué)生的認知規(guī)律出發(fā),進行啟發(fā)、誘導(dǎo)、探索,運用分組討論方法、引導(dǎo)探究法等,充分調(diào)動學(xué)生的積極性,層層設(shè)疑,發(fā)揮學(xué)生的主體作用,引導(dǎo)學(xué)生在自主學(xué)習(xí)與分組討論交流中體會知識的價值,感受知識的無窮魅力,培養(yǎng)團隊合作精神.(四)教學(xué)過程環(huán)節(jié)教學(xué)環(huán)節(jié)教學(xué)內(nèi)容師生活動設(shè)計意圖展示實例提出問題問題1請同學(xué)們思考一下本題的步驟有哪幾步?若用符號如何表示他們間的推理關(guān)系?教師展示大屏幕,顯示例1,學(xué)生動腦思考,積極發(fā)言,給出本題做法。做法可能很多,及時肯定,選出一種顯示在大屏幕上.師生共同分析做出解答.根據(jù)學(xué)生的知識結(jié)構(gòu)回顧舊知,引入新知,過渡自然,符合學(xué)生的認知規(guī)律.新課講解問題2上述證明方法是哪一種證明方法?其主要特點是什么?綜合法,其特點是從原因?qū)С鼋Y(jié)果的思維方法,即從已知條件出發(fā),經(jīng)過逐步推理,最后達到待證的結(jié)論.課堂練習(xí)1求證:問題3若從待證結(jié)論出發(fā),一步一步尋求結(jié)論成立的充分條件,最后達到已知條件或已被證明的事實,這是什么證明方法?分析法下面我們來看一下例2,請同學(xué)們自己做出解答.例2求證:課堂練習(xí)2求證:.問題4類比綜合法,寫出分析法的符號表示,并完成黑板表格中分析法的內(nèi)容.問題5綜合法和分析法各有特點,在實際解題時,用哪一種方法較好?從尋求解題思路來看,分析法執(zhí)果索因,常常根底漸近,有希望成功;綜合法由因?qū)Ч?,往往枝?jié)橫生,不容易奏效.從表達過程來看,分析法敘述繁瑣,文辭冗長;綜合法形式簡潔,條理清楚.綜上所述,分析法利于思考,綜合法便于表達.因此在實際解題時,常常先以分析法為主尋求解題思路,再用綜合法有條理地表述解題過程.學(xué)生思考,師生共同完成黑板表格中關(guān)于綜合法的內(nèi)容.學(xué)生自主完成,選一名代表把做法用實物投影儀展示過程,一起糾錯.學(xué)生思考完成,教師巡視,選有代表性的做法用實物投影儀展示,與學(xué)生一起完善答案,并規(guī)范步驟.學(xué)生分組討論然后選代表上黑板填寫,教師與學(xué)生一起完善答案.此為難點,所以教師分析,并與學(xué)生一起歸納解決.培養(yǎng)學(xué)生思考、分析、歸納的習(xí)慣,以及團隊合作精神.讓學(xué)生了解綜合法和分析法的思維過程及特點,體會它們之間的聯(lián)系.鞏固練習(xí)求證:當一個圓與一個正方形周長相等時,這個圓的面積比正方形的面積大.教師利用大屏幕顯示練習(xí).學(xué)生做練習(xí),教師巡視,選有代表性的做法用實物投影儀顯示并分析.讓學(xué)生體會在實際解題時綜合法和分析法的靈活應(yīng)用,培養(yǎng)學(xué)生應(yīng)用所學(xué)知識、方法解決實際問題的能力.課堂小結(jié)直接證明的兩種方法:綜合法和分析法;綜合法和分析法的思維過程及特點.學(xué)生回答,教師完善,并用多媒體展示出來.讓學(xué)生養(yǎng)成善于總結(jié)的好習(xí)慣,并本節(jié)的知識研究線索有一個全面的認識.布置作業(yè)(必做)課本第65頁,練習(xí)A,第1,2題;(2)(選做)課本第65頁,練習(xí)B,第1,2題書面作業(yè)第一層次要求所有學(xué)生完成,第二層次要求學(xué)有余力的同學(xué)完成.作業(yè)是學(xué)生信息的反饋,能在作業(yè)中發(fā)現(xiàn)和彌補教學(xué)中的不足,同時注重個體差異,因材施教.(五)板書設(shè)計2.2.1綜合法與分析法方法綜合法分析法特點由因?qū)Ч麍?zhí)果索因符號表示原理尋找已知成立的必要條件尋找結(jié)論成的充分條件格式因為...所以...要證...只需證...例1例2課堂練習(xí)1課堂練習(xí)2鞏固練習(xí)課堂小結(jié)作業(yè)綜合法與分析法學(xué)情分析知識方面:本節(jié)內(nèi)容是對學(xué)生已學(xué)過的基本證明方法的總結(jié),為本節(jié)課引導(dǎo)學(xué)生認識各種證明方法的特點,體會證明的必要性提供知識基礎(chǔ)。能力方面:學(xué)生具備了一定的認知、分析、歸納能力;能夠進行小組活動。學(xué)生缺少深入探究問題的方法;語言表達能力和步驟規(guī)范有待提高。綜合法與分析法效果分析本節(jié)課是對學(xué)生已學(xué)過的基本證明方法的總結(jié),通過對典型例題的探究,學(xué)生認識了綜合法和分析法的特點,體會了證明的必要性,讓學(xué)生感受邏輯證明在數(shù)學(xué)以及日常生活中的作用,有助于發(fā)展學(xué)生的思維能力,提高學(xué)生的數(shù)學(xué)素養(yǎng),從而假期數(shù)學(xué)與生活的橋梁,形成嚴謹?shù)睦硇运季S和科學(xué)精神。本節(jié)課通過對幾個例題的分析,經(jīng)過學(xué)生之間的討論、互評,教師的引導(dǎo)幫助,使得本節(jié)課的難點得以突破。學(xué)生通過總結(jié)也完善了自己的認知結(jié)構(gòu),從而對該部分得知識也有了更深的體會。我在課堂上注重學(xué)生的主體參與,努力創(chuàng)設(shè)教師引導(dǎo)下的學(xué)生自主探究、合作交流的學(xué)習(xí)方式。通過課堂練習(xí),看到學(xué)生基本上能掌握用綜合法和分析法解決實際問題,課前制定的教學(xué)目標基本實現(xiàn)。通過反思,才能進步,我覺得課前預(yù)設(shè)與課堂生成相結(jié)合,才是符合新課程理念的對學(xué)生發(fā)展最為有

綜合法與分析法教材分析本節(jié)課是人教B版選修2-2第二章第二節(jié),通過對已學(xué)過的數(shù)學(xué)實例的分析、歸納與總結(jié),了解直接證明的兩種基本方法:綜合法和分析法,了解綜合法和分析法的思維過程和特點,通過實際演練,使學(xué)生體會證明的必要性,并發(fā)展他們的分析問題、解決問題的能力。本節(jié)內(nèi)容是把過去滲透在具體數(shù)學(xué)內(nèi)容中的思維方法,以集中的、顯性的形式呈現(xiàn)出來使學(xué)生更加明確這些方法,并能有意識地使用它們,以培養(yǎng)言之有理、論證有據(jù)的好習(xí)慣,發(fā)展學(xué)生的思維能力,逐步形成理性思維和科學(xué)精神。綜合法與分析法測評練習(xí)A級分析法是從要證的結(jié)論出發(fā),尋求使它成立的()A.充分條件 B.必要條件C.充要條件 D.既不充分又不必要條件2.設(shè)a、b、c是互不相等的正數(shù),則下列不等式中不恒成立的是()A.|a-c|≤|a-b|+|c-b|B.a(chǎn)2+eq\f(1,a2)≥a+eq\f(1,a)C.eq\r(a+3)-eq\r(a+1)<eq\r(a+2)-eq\r(a)D.|a-b|+eq\f(1,a-b)≥23.要證:a2+b2-1-a2b2≤0,只要證明 ()A.2ab-1-a2b2≤0 B.a(chǎn)2+b2-1-eq\f(a4+b4,2)≤0C.eq\f(a+b2,2)-1-a2b2≤0 D.(a2-1)(b2-1)≥04.設(shè)a,b是兩個實數(shù),給出下列條件:①a+b>1;②a+b=2;③a+b>2;④a2+b2>2;⑤ab>1.其中能推出:“a,b中至少有一個大于1”的條件是 ()A.②③ B.①②③ C.③ D.③④⑤5.設(shè)a>b>0,m=eq\r(a)-eq\r(b),n=eq\r(a-b),則m,n的大小關(guān)系是________.6.(12分)若a,b,c是不全相等的正數(shù),求證:lgeq\f(a+b,2)+lgeq\f(b+c,2)+lgeq\f(c+a,2)>lga+lgb+lgc.B級7.設(shè)a,b,c均為正實數(shù),則三個數(shù)a+eq\f(1,b),b+eq\f(1,c),c+eq\f(1,a)()A.都大于2 B.都小于2C.至少有一個不大于2 D.至少有一個不小于28.在△ABC中,三個內(nèi)角A、B、C的對邊分別為a、b、c,若eq\f(1,a+b)+eq\f(1,b+c)=eq\f(3,a+b+c),試問A,B,C是否成等差數(shù)列,若不成等差數(shù)列,請說明理由.若成等差數(shù)列,請給出證明.綜合法與分析法教學(xué)反思本節(jié)課開始先以學(xué)生熟知的詩句入手,初步認識綜合法和分析法的特點,進而通過實例顯現(xiàn)出綜合法和分析法的思維過程及特點,一步步解決了問題,思維過程和邏輯證明能力的培養(yǎng)得以充分展現(xiàn).通過創(chuàng)設(shè)教學(xué)情境,激活了學(xué)生思維.有助于發(fā)展學(xué)生的思維能力,提高學(xué)生的數(shù)學(xué)素養(yǎng).本節(jié)課要求學(xué)生了解數(shù)學(xué)直接證明的基本方法:綜合法和分析法,感受邏輯證明在數(shù)學(xué)以及日常生活中的作用,養(yǎng)成言之有理,論證有據(jù)的好習(xí)慣.新課標指出:學(xué)生的數(shù)學(xué)學(xué)習(xí)內(nèi)容應(yīng)當是現(xiàn)實的、有趣的和富有挑戰(zhàn)性的。從心理學(xué)的角度看,青少年有一種好奇的心態(tài)、探究的心理.因此,本教案緊緊地抓住高二學(xué)生的這一特征,利用學(xué)生身邊的問題,設(shè)計教學(xué)情境,使學(xué)生在觀察、實驗、猜想、討論等活動中,逐步形成創(chuàng)新意識,順利完成本節(jié)課的大綱要求.一些遺憾:由于這種探究課型在平時的教學(xué)中還不夠深入,有些學(xué)生往往以一種觀賞者

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論