




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Skewness,Kurtosis,andtheNormalCurve?
Skewness
Ineverydaylanguage,theterms“skewed”and“askew”areusedtorefertosomethingthatisoutoflineordistortedononeside.Whenreferringtotheshapeoffrequencyorprobabilitydistributions,“skewness”referstoasymmetryofthedistribution.Adistributionwithanasymmetrictailextendingouttotherightisreferredtoas“positivelyskewed”or“skewedtotheright,”whileadistributionwithanasymmetrictailextendingouttotheleftisreferredtoas“negativelyskewed”or“skewedtotheleft.”Skewnesscanrangefromminusinfinitytopositiveinfinity.
KarlPearson(1895)firstsuggestedmeasuringskewnessbystandardizingthedifferencebetweenthemeanandthemode,thatis,sk=—_mode.Populationmodeso
,_3(M一median)
sk=
est s
arenotwellestimatedfromsamplemodes,butonecanestimatethedifferencebetweenthemeanandthemodeasbeingthreetimesthedifferencebetweenthemeanandthemedian(Stuart&Ord,1994),leadingtothefollowingestimateofskewness:
Manystatisticiansusethismeasurebutwiththe‘3’eliminated,
(M-median)
thatis,sk= .Thisstatisticrangesfrom-1to+1.Absolutevaluesabove
s
0.2indicategreatskewness(Hildebrand,1986).
Skewnesshasalsobeendefinedwithrespecttothethirdmomentaboutthe
mean:y=?(X-~^)3-,whichissimplytheexpectedvalueofthedistributionofcubedz1 no3
scores.Skewnessmeasuredinthiswayissometimesreferredtoas“Fisher’sskewness.”Whenthedeviationsfromthemeanaregreaterinonedirectionthanintheotherdirection,thisstatisticwilldeviatefromzerointhedirectionofthelargerdeviations.Fromsampledata,Fisher’sskewnessismostoftenestimatedby:
Forlargesamplesizes(n>150),g1maybedistributed
nEz3g=
(n-1)(n-2)
approximatelynormally,withastandarderrorofapproximatelyc6/n.Whileonecouldusethissamplingdistributiontoconstructconfidenceintervalsforortestsofhypothesesabouty1,thereisrarelyanyvalueindoingso.
Themostcommonlyusedmeasuresofskewness(thosediscussedhere)mayproducesurprisingresults,suchasanegativevaluewhentheshapeofthedistribution
appearsskewedtotheright.Theremaybesuperioralternativemeasuresnotcommonlyused(Groeneveld&Meeden,1984).
Itisimportantforbehavioralresearcherstonoticeskewnesswhenitappearsintheirdata.Greatskewnessmaymotivatetheresearchertoinvestigateoutliers.Whenmakingdecisionsaboutwhichmeasureoflocationtoreport(meansbeingdrawninthedirectionoftheskew)andwhichinferentialstatistictoemploy(onewhichassumesnormalityoronewhichdoesnot),oneshouldtakeintoconsiderationtheestimatedskewnessofthepopulation.Normaldistributionshavezeroskewness.Ofcourse,adistributioncanbeperfectlysymmetricbutfarfromnormal.Transformationscommonlyemployedtoreduce(positive)skewnessincludesquareroot,log,andreciprocaltransformations.
AlsoseeSkewnessandtheRelativePositionsofMean,Median,andMode
Kurtosis
KarlPearson(1905)definedadistribution’sdegreeofkurtosisas^=P2-3,
E(X一u)4
whereP=— -,theexpectedvalueofthedistributionofZscoreswhichhave
no4
c_ n(n+1)ZZ4 _ 3(n-1)2
g2—(n-1)(n-2)(n-3)-(n-2)(n-3)
beenraisedtothe4thpower.P2isoftenreferredtoas“Pearson’skurtosis,”andP2-3(oftensymbolizedwithy2)as“kurtosisexcess”or“Fisher’skurtosis,”eventhoughitwasPearsonwhodefinedkurtosisasP2-3.Anunbiasedestimatorfory2is
Forlargesamplesizes(n>1000),g2maybe
distributedapproximatelynormally,withastandarderrorofapproximately<24/n(Snedecor,&Cochran,1967).Whileonecouldusethissamplingdistributiontoconstructconfidenceintervalsforortestsofhypothesesabouty2,thereisrarelyanyvalueindoingso.
Pearson(1905)introducedkurtosisasameasureofhowflatthetopofasymmetricdistributioniswhencomparedtoanormaldistributionofthesamevariance.Hereferredtomoreflat-toppeddistributions(y2<0)as“platykurtic,”lessflat-toppeddistributions(y2>0)as“l(fā)eptokurtic,”andequallyflat-toppeddistributionsas“mesokurtic”(y2六0).Kurtosisisactuallymoreinfluencedbyscoresinthetailsofthedistributionthanscoresinthecenterofadistribution(DeCarlo,1967).Accordingly,itisoftenappropriatetodescribealeptokurticdistributionas“fatinthetails”andaplatykurticdistributionas“thininthetails.”
Student(1927,Biometrika,19,160)publishedacutedescriptionofkurtosis,whichIquotehere:“Platykurticcurveshaveshorterftails'thanthenormalcurveoferrorandleptokurticlongerftails.’Imyselfbearinmindthemeaningofthewordsbytheabovememoriatechnica,wherethefirstfigurerepresentsplatypusandthesecondkangaroos,notedforlepping.”Pleasepointyourbrowsertomembers.aol./jeff570/k.html,scrolldownto“kurtosis,”andlookatStudent’sdrawings.
Moors(1986)demonstratedthatp=Var(Z2)+1.Accordingly,itmaybebesttotreatkurtosisastheextenttowhichscoresaredispersedawayfromtheshouldersofadistribution,wheretheshouldersarethepointswhereZ2=1,thatis,Z=±1.BalandaandMacGillivray(1988)wrote“itisbesttodefinekurtosisvaguelyasthelocation-andscale-freemovementofprobabilitymassfromtheshouldersofadistributionintoitscentreandtails.”Ifonestartswithanormaldistributionandmovesscoresfromtheshouldersintothecenterandthetails,keepingvarianceconstant,kurtosisisincreased.Thedistributionwilllikelyappearmorepeakedinthecenterandfatterinthetails,likea
6、Laplacedistribution(y2=3)orStudentstwithfewdegreesoffreedom(y2=-f~4).
Startingagainwithanormaldistribution,movingscoresfromthetailsandthecentertotheshoulderswilldecreasekurtosis.Auniformdistributioncertainlyhasaflattop,withy=-1.2,buty2canreachaminimumvalueof-2whentwoscorevaluesareequallyprobablyandallotherscorevalueshaveprobabilityzero(arectangularUdistribution,thatis,abinomialdistributionwithn=1,p=.5).OnemightobjectthattherectangularUdistributionhasallofitsscoresinthetails,butcloserinspectionwillrevealthatithasnotails,andthatallofitsscoresareinitsshoulders,exactlyonestandarddeviationfromitsmean.Valuesofg2lessthanthatexpectedforanuniformdistribution(-1.2)maysuggestthatthedistributionisbimodal(Darlington,1970),butbimodaldistributionscanhavehighkurtosisifthemodesaredistantfromtheshoulders.
OneleptokurticdistributionweshalldealwithisStudent’stdistribution.Thekurtosisoftisinfinitewhendf<5,6whendf=5,3whendf=6.Kurtosisdecreasesfurther(towardszero)asdfincreaseandtapproachesthenormaldistribution.
Kurtosisisusuallyofinterestonlywhendealingwithapproximatelysymmetricdistributions.Skeweddistributionsarealwaysleptokurtic(Hopkins&Weeks,1990).Amongtheseveralalternativemeasuresofkurtosisthathavebeenproposed(noneofwhichhasoftenbeenemployed),isonewhichadjuststhemeasurementofkurtosistoremovetheeffectofskewness(Blest,2003).
Thereismuchconfusionabouthowkurtosisisrelatedtotheshapeofdistributions.Manyauthorsoftextbookshaveassertedthatkurtosisisameasureofthepeakednessofdistributions,whichisnotstrictlytrue.
Itiseasytoconfuselowkurtosiswithhighvariance,butdistributionswithidenticalkurtosiscandifferinvariance,anddistributionswithidenticalvariancescandifferinkurtosis.Herearesomesimpledistributionsthatmayhelpyouappreciatethatkurtosisis,inpart,ameasureoftailheavinessrelativetothetotalvarianceinthedistribution(rememberthe"0/inthedenominator).
Table1.
Kurtosisfor7SimpleDistributionsAlsoDifferinginVariance
X
freqA
freqB
freqC
freqD
freqE
freqF
freqG
05
20
20
20
10
05
03
01
10
00
10
20
20
20
20
20
15
20
20
20
10
05
03
01
Kurtosis
-2.0
-1.75
-1.5
-1.0
0.0
1.33
8.0
Variance
25
20
16.6
12.5
8.3
5.77
2.27
Platykurtic
Leptokurtic
WhenIpresentedthesedistributionstomycolleaguesandgraduatestudentsandaskedthemtoidentifywhichhadtheleastkurtosisandwhichthemost,allsaidAhasthemostkurtosis,Gtheleast(exceptingthosewhorefusedtoanswer).ButinfactAhastheleastkurtosis(-2isthesmallestpossiblevalueofkurtosis)andGthemost.Thetrickistodoamentalfrequencyplotwheretheabscissaisinstandarddeviationunits.InthemaximallyplatykurticdistributionA,whichinitiallyappearstohaveallitsscoresinitstails,noscoreismorethanoneoawayfromthemean-thatis,ithasnotails!IntheleptokurticdistributionG,whichseemsonlytohaveafewscoresinitstails,onemustrememberthatthosescores(5&15)aremuchfartherawayfromthemean(3.3o)thanarethe5’s&15,sindistributionA.Infact,inGninepercentofthescoresaremorethanthreeofromthemean,muchmorethanyouwouldexpectinamesokurticdistribution(likeanormaldistribution),thusGdoesindeedhavefattails.
IfyouwereyoutoaskSAStocomputekurtosisontheAscoresinTable1,youwouldgetavaluelessthan-2.0,lessthanthelowestpossiblepopulationkurtosis.Why?SASassumesyourdataareasampleandcomputestheg2estimateofpopulationkurtosis,whichcanfallbelow-2.0.
SuneKarlsson,oftheStockholmSchoolofEconomics,hasprovidedmewiththefollowingmodifiedexamplewhichholdsthevarianceapproximatelyconstant,makingitquiteclearthatahigherkurtosisimpliesthattherearemoreextremeobservations(orthattheextremeobservationsaremoreextreme).Itisalsoevidentthatahigherkurtosisalsoimpliesthatthedistributionismorefsingle-peaked)(thiswouldbeevenmoreevidentifthesumofthefrequencieswasconstant).Ihavehighlightedtherowsrepresentingtheshouldersofthedistributionsothatyoucanseethattheincreaseinkurtosisisassociatedwithamovementofscoresawayfromtheshoulders.
Table2.
KurtosisforSevenSimpleDistributionsNotDifferinginVariance
X
Freq.A
Freq.B
Freq.C
Freq.D
Freq.E
Freq.F
Freq.G
-6.6
0
0
0
0
0
0
1
-0.4
0
0
0
0
0
3
0
1.3
0
0
0
0
5
0
0
2.9
0
0
0
10
0
0
0
3.9
0
0
20
0
0
0
0
4.4
0
20
0
0
0
0
0
5
20
0
0
0
0
0
0
10
0
10
20
20
20
20
20
15
20
0
0
0
0
0
0
15.6
0
20
0
0
0
0
0
16.1
0
0
20
0
0
0
0
17.1
0
0
0
10
0
0
0
18.7
0
0
0
0
5
0
0
20.4
0
0
0
0
0
3
0
26.6
0
0
0
0
0
0
1
Kurtosis
-2.0
-1.75
-1.5
-1.0
0.0
1.33
8.0
Variance
25
25.1
24.8
25.2
25.2
25.0
25.1
Whileisunlikelythatabehavioralresearcherwillbeinterestedinquestionsthatfocusonthekurtosisofadistribution,estimatesofkurtosis,incombinationwithotherinformationabouttheshapeofadistribution,canbeuseful.DeCarlo(1997)describedseveralusesfortheg2statistic.Whenconsideringtheshapeofadistributionofscores,itisusefultohaveathandmeasuresofskewnessandkurtosis,aswellasgraphicaldisplays.Thesestatisticscanhelponedecidewhichestimatorsortestsshouldperformbestwithdatadistributedlikethoseonhand.Highkurtosisshouldalerttheresearchertoinvestigateoutliersinoneorbothtailsofthedistribution.
TestsofSignificance
Somestatisticalpackages(includingSPSS)providebothestimatesofskewnessandkurtosisandstandarderrorsforthoseestimates.Onecandividetheestimatebyit’sstandarderrortoobtainaztestofthenullhypothesisthattheparameteriszero(aswouldbeexpectedinanormalpopulation),butIgenerallyfindsuchtestsoflittleuse.Onemaydoan“eyeballtest”onmeasuresofskewnessandkurtosiswhendecidingwhetherornotasampleis“normalenough”touseaninferentialprocedurethatassumesnormalityofthepopulation(s).Ifyouwishtotestthenullhypothesisthatthesamplecamefromanormalpopulation,youcanuseachi-squaregoodnessoffittest,comparingobservedfrequenciesintenorsointervals(fromlowesttohighestscore)withthefrequenciesthatwouldbeexpectedinthoseintervalswerethepopulationnormal.Thistesthasverylowpower,especiallywithsmallsamplesizes,wherethenormalityassumptionmaybemostcritical.Thusyoumaythinkyourdatacloseenoughtonormal(notsignificantlydifferentfromnormal)touseateststatisticwhichassumesnormalitywheninfactthedataaretoodistinctlynon-normaltoemploysuchatest,thenonsignificanceofthedeviationfromnormalityresultingonlyfromlowpower,smallsamplesizes.SAS’PROCUNIVARIATEwilltestsuchanullhypothesisforyouusingthemorepowerfulKolmogorov-Smirnovstatistic(forlargersamples)ortheShapiro-Wilksstatistic(forsmallersamples).Thesehaveveryhighpower,especiallywithlargesamplesizes,inwhichcasethenormalityassumptionmaybelesscriticalfortheteststatisticwhosenormalityassumptionisbeingquestioned.Thesetestsmaytellyouthatyoursampledifferssignificantlyfromnormalevenwhenthedeviationfromnormalityisnotlargeenoughtocauseproblemswiththeteststatisticwhichassumesnormality.
SASExercises
GotomyStatDatapageanddownloadthefileEDA.dat.GotomySAS-Programspageanddownloadtheprogramfileg1g2.sas.EdittheprogramsothattheINFILEstatementpointscorrectlytothefolderwhereyoulocatedEDA.datandthenruntheprogram,whichillustratesthecomputationofg1andg2.Lookattheprogram.TherawdataarereadfromEDA.datandPROCMEANSisthenusedtocomputeg1andg2.ThenextportionoftheprogramusesPROCSTANDARDtoconvertthedatatozscores.PROCMEANSisthenusedtocomputeg1andg2onthezscores.Notethatstandardizationofthescoreshasnotchangedthevaluesofg1andg2.Thenextportionoftheprogramcreatesadatasetwiththezscoresraisedtothe3rdandthe4thpowers.Thefinalstepoftheprogramusesthesepowersofztocomputeg1andg2usingtheformulaspresentedearlierinthishandout.Notethatthevaluesofg1andg2arethesameasobtainedearlierfromPROCMEANS.
GotomySAS-ProgramspageanddownloadandrunthefileKurtosis-Uniform.sas.Lookattheprogram.ADOloopandtheUNIFORMfunctionareusedtocreateasampleof500,000scoresdrawnfromauniformpopulationwhichrangesfrom0to1.PROCMEANSthencomputesmean,standarddeviation,skewness,andkurtosis.Lookattheoutput.Comparetheobtainedstatisticstotheexpectedvaluesforthefollowingparametersofauniformdistributionthatrangesfromatob:
Parameter
ExpectedValue
Parameter
ExpectedValue
Mean
a+b
2
Skewness
0
StandardDeviation
.,(b-a)2
12
Kurtosis
-1.2
GotomySAS-Programspageanddownloadandrunthefile“Kurtosis-T.sas,”whichdemonstratestheeffectofsamplesize(degreesoffreedom)onthekurtosisofthetdistribution.Lookattheprogram.WithineachsectionoftheprogramaDOloopisusedtocreate500,000samplesofNscores(whereNis10,11,17,or29),eachdrawnfromanormalpopulationwithmean0andstandarddeviation1.PROCMEANSisthenusedtocomputeStudent’stforeachsample,outputtingthesetscoresintoanewdataset.Weshalltreatthisnewdatasetasthesamplingdistributionoft.PROCMEANSisthenusedtocomputethemean,standarddeviation,andkurtosisofthesamplingdistributionsoft.Foreachvalueofdegreesoffreedom,comparetheobtainedstatisticswiththeirexpectedvalues.
Mean
StandardDeviation
Kurtosis
0
:df
6
\df-2
df-4
DownloadandrunmyprogramKurtosis_Beta2.sas.Lookattheprogram.EachsectionoftheprogramcreatesoneofthedistributionsfromTable1aboveandthenconvertsthedatatozscores,raisesthezscorestothefourthpower,andcomputesP2asthemeanofz4.Subtract3fromeachvalueofP2andthencomparetheresultingy2tothevaluegiveninTable1.
DownloadandrunmyprogramKurtosis-Normal.sas.Lookattheprogram.DOloopsandtheNORMALfunctionareusedtocreate10,000samples,eachwith1,000scoresdrawnfromanormalpopulationwithmean0andstandarddeviation1.PROCMEANScreatesanewdatasetwiththeg1andtheg2statisticsforeachsample.PROCMEANSthencomputesthemeanandstandarddeviation(standarderror)forskewnessandkurtosis.Comparethevaluesobtainedwiththoseexpected,0forthemeans,and<6/nand<24/nforthestandarderrors.
References
Balanda&MacGillivray.(1988).Kurtosis:Acriticalreview.AmericanStatistician,42:111-119.
Blest,D.C.(2003).Anewmeasureofkurtosisadjustedforskewness.Australian&NewZealandJournalofStatistics,45,175-179.
Darlington,R.B.(1970).Iskurtosisreally“peakeTheAmericanStatistician,24(2),1922.
DeCarlo,L.T.(1997).Onthemeaninganduseofkurtosis.P
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度公司與自然人教育培訓(xùn)合作協(xié)議
- 二零二五年度新能源項(xiàng)目股東股份交易保密協(xié)議
- 二零二五年度學(xué)校圖書資料室租賃合同協(xié)議
- 老齡化社會(huì)養(yǎng)老保障2025年度老人存款管理與社區(qū)互助協(xié)議
- 2025年度長(zhǎng)租公寓交房后物業(yè)費(fèi)及租住服務(wù)合同
- 二零二五年度研學(xué)旅行教育標(biāo)準(zhǔn)制定與實(shí)施合同
- 2025年度考研輔導(dǎo)機(jī)構(gòu)后勤保障合同模板
- 二零二五年度醫(yī)療保險(xiǎn)合作協(xié)議及費(fèi)用報(bào)銷指南
- 經(jīng)理任職發(fā)言稿
- 2025年湖北貨運(yùn)從業(yè)資格證科目一考試答案
- IATF16949-2016標(biāo)準(zhǔn)和內(nèi)審員培訓(xùn)
- 2024年共青團(tuán)入團(tuán)積極分子考試題庫(kù)及答案
- 2024年江蘇農(nóng)林職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)匯編
- 《中國(guó)痤瘡治療指南》課件
- 《休閑農(nóng)業(yè)園區(qū)管理》課件-第三章 休閑農(nóng)業(yè)的生產(chǎn)管理
- 2024年常州機(jī)電職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)及答案解析
- 2024年人教版小學(xué)語(yǔ)文六年級(jí)下冊(cè)第二單元測(cè)試卷(含答案解析)【可編輯打印】
- 統(tǒng)編版八年級(jí)語(yǔ)文下冊(cè) 24 唐詩(shī)三首練習(xí)題 (含答案)
- 教育技術(shù)學(xué)研究方法基礎(chǔ)
- 幼兒園大班科學(xué)課件:《植物的生長(zhǎng)》
- 混凝土抗壓強(qiáng)度統(tǒng)計(jì)評(píng)定表(自動(dòng)計(jì)算-數(shù)理-非數(shù)理)
評(píng)論
0/150
提交評(píng)論