版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
TunnelStabilityAnalysisofTunnelExcavationAspillwaytunnelforanembankmentdamistobeconstructedinapoorqualitysandstone.Theexcavateddiameterofthetunnelisabout13mandthecoverovertheroofis8m.Thetunnelistohavea1.3mthickun-reinforcedconcreteliningand,afterplacementofthislifting,a28tohighportionoftherockfilldamwillheovertheconstructedtunnel.Thequestionstobeaddressedare:(1)Whatsupportisrequiredinordertoexcavatethetunnelsafelyundertheveryshallowcover?(2)Istheproposedtopheadingandbenchexcavationsequence,usingdrillandblastmethods,appropriateforthistunnel?(3)Howwilltheconcreteliningrespondtotheloadingimposedbytheplacementof28mofrockfilloverthetunnel?Inordertoanswerthesequestionsaseriesoftwo-dimensionalfiniteelementanalyseswerecarriedusingtheprogramPHASE'`.Thefirstoftheseanalysesexaminedthestabilityandsupportrequirementsforthetopheadingexcavation.Thefinalanalysisincludedtheentireexcavationandsupportsequenceandtheplacementoftherockfilloverthetunnel.Therockmassisapoorqualitysandstonethat,beingclosetosurface,isheavilyjointed.ThemechanicalpropertiesassumedforthisrockmassareacohesivestrengthC=0.04Mpa,africtionangleof40andamodulusofdeformationE=1334MPa.Noinsitustressmeasurementsareavailablebut,becauseofthelocationofthetunnelinthevalleyside,ithasbeenassumedthatthehorizontalstressnormaltothetunnelaxishasbeenreducedbystressrelief.Themodelisloadedbygravityandaratioofhorizontaltoverticalstressor0.5isassumed.Asimplifiedversionofthemodelwasusedtoanalysethestabilityandsupportrequirementsforthetopheading.Thismodeldidexcludetheconcreteliningandthebenchexcavations.Thefirstmodelwasusedtoexaminetheconditionsforafull-faceexcavationofthetopheadingwithoutanysupport.Thisisalwaysausefulstartingpointinanytunnelsupportdesignstudysinceitgivesthedesigneraclearpictureofthemagnitudeoftheproblemsthathavetobedealtwith.Themodelwasloadedintwostages.Thefirststageinvolvedthemodelwithoutanyexcavationsandthiswascreatedbyassigningthematerialwithintheexcavationboundarythepropertiesofthesurroundingrockmass.Thisfirststageiscarriedoutinordertoallowthemodeltoconsolidateundergravitationalloading.Itisrequiredinordertocreateareferenceagainstwhichsubsequentdisplacementsinthemodelcanbemeasured.TheresultsoftheanalysieareillustratedinFigure18.1,thatshowntheextentofyieldintherockmasssurroundingthetopheading,andFigure18.2thatshowstheinduceddisplacementsaroundthetunnel.Thelargeamountofyieldintherockmassoverlyingthetopheadingsuggeststhatthisexcavationwillbeunstablewithoutsupport.ThisviewissupportedbythedisplacementsshowninFigureI8.2.Thereadermaybesurprisedthatthedisplacementintheroofofthetunnelisonly26mmwhentheextentoftheyieldzonesuggestscompletecollapseoftheroof.IthastoberememberedthatPHASEisasmallstrainfiniteelementmodelandthatitcannotaccommodatetheverylargestrainsassociatedwiththecompletecollapseofatunnel.InexaminingFigure18.2itismoreimportanttolookattheshapeoftheoveralldisplacementprofilethanthemagnitudeofthedisplacements.Arockmasswillnottoleratethedifferentialdisplacementsillustratedandprogressiveravellingleadingtoultimatecollapsewouldalmostcertainlyresultfromexcavationofanunsupportedtopheading.Ageneralruleofthumbusedbyexperiencedtunnellersisthatanundergroundexcavationwillnotbeself-supportingunlessthecoveroverthetunnelexceeds1.5timesthespanoftheopening.Thisisatypicalsituationthatoccurswhenexcavatingtunnelportalsarethereareseveraloptionsavailablefordealingwiththeproblem.Oneoftheseoptionsistouseashotcreteliningtostabilizetherockmassabovethetunnel.Afiniteelementanalysisofthisoptionshowsthata50mmthicklayeroffullyhardenedshotcrete(uniaxialcompressivestrengthof30MPa)issufficienttostabilizethetunnel.Theproblemishowtogetofshotcreteintoanadvancingtunnelheading.Asecondproblemiswhethertheworkerswouldhavesufficientconfidenceinsuchasolutiontoworkinthetunnel.Oneprojectonwhichthissolutionwasusedwastheconstructionofan8mspandiversiontunnelforadam.Therockmasswasaveryweaklycementedlimestonethatcouldbeexcavatedbyhandbutwhichhadsufficientstrengththatitwasmarginallyself-supporting.TheScandinaviancontractorontheprojecthadusedshotcreteformanyyearsandtheveryexperiencedtunnellershadcompleteconfidenceinworkingunderacoverofshotcrcte.Thetunnelwasnotonthecriticalpathoftheprojectandsoconstructioncouldproceedatasufficientlyslowpacetoallowtheshotcretetosetbeforethenextadvance.Alayerofun-reinforcedshotcretewasthesolesupportusedinthistunnel,withoccasionalsteelsetsembeddedintheshotcretewheregroundconditionswereparticularlydifficult.Inthecaseofthetopheadinginsandstoneunderconsiderationhere,theshotcretesolutionwasrejectedbecause,inspiteofthefiniteelementanalysis,thedesignersdidnothavesufficientconfidenceintheabilityoftheshotcretelayertosupportthelargespanofblockysandstone.Inaddition,thecontractoronthisdamprojectdidnothaveagreatdealofexperienceinusingshotcreteintunnelsanditwasunlikelythattheworkerswouldhavebeenpreparedtooperateunderacoverofshotcreteonly.Anotheralternativethatiscommonlyusedinexcavatingtunnelportalsistousesteelsetstostabilisetheinitialportionofthetunnelunderlowcover.Thissolutionworkswellinthecaseofsmalltunnelsbut,inthiscase,a13mspantunnelwouldrequireveryheavysets.Anadditionaldisadvantageinthiscaseisthattheinstallationofsetswouldpermittoomuchdeformationintherackmass.Thisisbecausethesteelsetsareapassivesupportsystemandtheyonlycarryaloadwhentherockmasshasdeformedontothesets.Sincethistunnelisindeformationofadam,excessivedeformationisclearlynotacceptablebecauseoftheadditionalleakagepathswhichwouldbecreatedthroughtherockmass.Thesolutionfinallyadoptedwas"borrowed"fromtheminingindustrywhereuntensionedfullygrouteddowelsarefrequentlyusedtopre-supporttherockmassaboveundergroundexcavations.Inthiscase,apattern3mx3mpatternof15mlong60toncapacitycableswereinstalledfromthegroundsurfacebeforeexcavationofthetopheadingwascommenced.Whenthesecableswereexposedintheexcavation,faceplateswereattachedandtheexcesscablelengthwascutoff.Inaddition,a2mx2mpatternof6mlongmechanicallyanchoredrockboltswereinstalledradiallyfromtheroofofthetopheading.TheresultsofananalysisofthissupportsystemareillustratedinFigure18.3andFigure18.4whichshowtheextentoftheyieldzoneandthedeformationsintherockmassabovethetopheading.ComparingFigure18.1andFigure18.3showsthattheextentoftheyieldzoneisonlyreducedbyasmallamountbytheenstallationofthesupportsystem.Thisisnotsurprisingsincesomedeformationoftherockmassisrequiredinordertomobilizethesupportingloadsintheuntensionedcables.Thisdeformationoccursasaresultoffailureoftherockmass.Figure18.4showsthatthedisplacementsintheroofofthetopheadinghavebeenreducedsubstantiallyasaresultoftheplacementofthesupport.However,asmallproblemremainsandthatistheexcessivedisplacementoftherockbetweentherockboltfaceplateswhicharespacedona2mx2mgrid.Unlessthisdisplacementiscontrolleditcanleadtoprogressiveravellingoftherockmass.Onlyasmallsurfacepressureisrequiredtocontrolthisravellingandthiscouldbeachievedbymeansofalayerofmeshorshotcreteofbytheinstallationoflightsteelsets.Inthiscasethelattersolutionwasadoptedbecauseofthesenseofsecuritywhichthesegavefortheworkersinthetunnel.洞室開挖穩(wěn)定分析某土石壩工程在質(zhì)量差的砂巖區(qū)開挖溢洪隧洞。其開挖直徑13m,頂部理深8rn。隧洞有1.3m厚的普通混凝土襯砌。襯砌澆筑后在隧洞上修建28m高的土石壩出水口。面臨的問題是:(1)在淺部開挖時(shí),為保證溢洪隧洞的安全所需的支護(hù)形式?(2)在隧洞開挖時(shí)比較適用的是鉆爆法施工,開挖過程中如何確定頂部上導(dǎo)洞和分步開挖的順序?(3)混凝土襯砌與隧洞上28m高的堆石荷載之間的作用是怎樣的?為解決上述問題,采用PHASE2程序進(jìn)行了一系列的平面有限元分析。首先對(duì)上導(dǎo)洞開挖的穩(wěn)定性及所需要的支護(hù)形式進(jìn)行分析,然后對(duì)全斷面開挖、支護(hù)順序和堆石對(duì)隧洞襯砌的影響進(jìn)行分析巖體為質(zhì)量差的砂巖,近地表淺部節(jié)理發(fā)育。其力學(xué)特性建議為:黏聚力c=0.04Mpa.內(nèi)摩擦角為40度,變形模量E=1334MPa。沒有現(xiàn)場(chǎng)地應(yīng)力量測(cè)資料,由于隧洞位于谷坡,可以假定垂直隧洞軸線的水平應(yīng)力由于應(yīng)力釋放而減小,并且認(rèn)為水平與垂直應(yīng)力之比為0.5,計(jì)算模型考慮自重荷載.一簡(jiǎn)化的計(jì)算模型可用于洞室頂拱穩(wěn)定性分析和支護(hù)要求。該模型不包括混凝土襯砌和臺(tái)階開挖。初始模型用來檢查在沒有任何支護(hù)情況下的上導(dǎo)洞全斷面開挖的情況。該模型常用于隧洞支護(hù)設(shè)計(jì)研究開始階段,因?yàn)槟P涂梢詾樵O(shè)計(jì)者提供較清楚的將要處理問題的難度。模型的加載分兩個(gè)階段。首先是沒有開挖情況下的模型,此模型是在開挖邊界內(nèi)用給定巖石材料特性建立起來。第一階段實(shí)施是為了在重力荷載條件下對(duì)模型加固相對(duì)于模型其后的位移可以量測(cè)到,則創(chuàng)建一個(gè)參考系是必要的。分析結(jié)果如圖18.1所示,圖中顯示了上導(dǎo)洞圍巖的屈服范圍;而圖18.2則顯示了旋隧洞次生位移的情況。上導(dǎo)洞洞頂巖體的大范圍屈服說明在沒有支護(hù)條件下的開挖是不穩(wěn)定的。圖18.的位移也說明了這一點(diǎn)。大家感到奇怪的是當(dāng)屈服帶的范圍被暗示洞頂會(huì)全部坍塌時(shí),隧洞頂部?jī)H有26mm的位移。但應(yīng)記住PHASE“是一個(gè)關(guān)于小應(yīng)變模型的有限元程序,并不適用于隧洞整體塌落的應(yīng)變工況。從圖18.2可看出,考慮整體位移形狀遠(yuǎn)比位移量重要,而且?guī)r體將不能承受圖所示的差異性位移,上導(dǎo)洞不做支護(hù)開挖,由于漸進(jìn)式剝落.最終導(dǎo)致洞石完全塌落是肯定。經(jīng)驗(yàn)豐富的隧洞建設(shè)者采用的經(jīng)驗(yàn)法則是隧洞上部覆蓋層厚度大于1.5倍洞室跨度,地下開挖才可達(dá)到自承支護(hù)。對(duì)所涉及的問題來說,當(dāng)開挖洞日有幾種選取方案時(shí),上面情況才會(huì)發(fā)生。這些方案之一是采用噴混凝土襯砌來維持隧洞頂部巖體的穩(wěn)定。這一方案有限元分析表明,50mm厚的充分硬化噴混凝土層(單軸壓縮強(qiáng)度30MPa)對(duì)于隧洞的穩(wěn)定已經(jīng)足夠。問題是如何把充分硬化的噴射混凝土注人到前方的洞室端部。其次是施工者是否有信心來解決隧洞的這一問題。某工程在為大壩建一條8m跨度的導(dǎo)流洞時(shí)采用了噴混凝土襯砌。圍巖為弱膠結(jié)的灰?guī)r??捎檬止ぞ蜻M(jìn),但有足夠的強(qiáng)度在一定程度上達(dá)到自承作用。斯堪的納維亞(Scandinavian)承包商在工程上采用噴混凝土技術(shù)已多年,非常有經(jīng)驗(yàn)的隧道建設(shè)者完全有信心在噴射過混凝土的隧道中施工。該隧洞并不是工程的關(guān)鍵隧洞,建設(shè)者有充分的時(shí)間進(jìn)行噴混凝土施工。在隧洞中噴混凝土技術(shù)是常用的支護(hù)措施,對(duì)隧洞地質(zhì)條件特別差的地段,采用預(yù)埋在噴混凝土層中的鋼拱架支護(hù)。在砂巖中進(jìn)行上導(dǎo)行洞開挖,未采用噴混凝土方案,盡管有限元分析結(jié)果表明是可以的,但設(shè)計(jì)者沒有充分的信心認(rèn)為噴混凝土層可以對(duì)塊狀砂巖大跨度洞室進(jìn)行支護(hù)。除此以外,大壩項(xiàng)目的承包商沒有隧洞噴混凝土施工的豐富經(jīng)驗(yàn),施工人員也不準(zhǔn)備在僅有噴混凝土支護(hù)條件下施工。在開挖洞口時(shí)另一個(gè)通常采用的方法是在洞頂覆蓋層較薄的地方用鋼架來支護(hù)隧洞的進(jìn)口部分。在小型隧洞中常用此法,但本工程情況13m跨度的隧洞需要高強(qiáng)度的鋼架。另一個(gè)不利因素是安裝鋼架時(shí)要預(yù)留有巖體較大的變形量。這是因?yàn)殇摷苁且粋€(gè)被動(dòng)的支護(hù)系統(tǒng),只有當(dāng)巖體變形并與之接觸時(shí)才可承重。由于隧洞位于壩基中。過大然不能接受,因?yàn)檫^大的變形會(huì)增多滲漏通道。最終采取的方案借鑒采礦工程的經(jīng)驗(yàn),即對(duì)地下開挖以上的巖體一般采用非張拉注漿錨索進(jìn)行預(yù)支護(hù)。具體施工時(shí),在上導(dǎo)洞室開挖前,從地表安裝裝間距3m*3m、長(zhǎng)15m、錨固力60t的錨索。當(dāng)錨索在開挖面出露時(shí),焊上面板并把多余的錨索切掉。此外,在洞室頂部安裝放射狀間距2mx2m、長(zhǎng)6m的機(jī)械錨固的巖石錨桿。支護(hù)系統(tǒng)的分析結(jié)果見圖18.3和圖18.4,圖中表明了屈服帶的發(fā)展程度和上導(dǎo)洞之上巖體的變形情況。對(duì)比圖18.1和圖18.3看出,在安裝支護(hù)系統(tǒng)后,屈服帶范圍有少量減小。這并不奇怪,因?yàn)閹r體的某些變形要協(xié)調(diào)非張拉錨索的支護(hù)荷載,而且這些變形是巖體破裂的結(jié)果。圖18.4表明,上導(dǎo)洞頂拱的位移隨著支護(hù)的安裝顯著地減少。然而.仍存在一些小問題,在巖石錨桿面板(以2mx2m的網(wǎng)格布設(shè))之間的巖石仍存在較大位移。如果不對(duì)這些位移進(jìn)行控制,就可能導(dǎo)致巖體的漸進(jìn)式剝落破壞。控制巖體的剝落作用只需要很小的表面壓力,可通過掛網(wǎng)或安裝輕型鋼架噴混泥土來實(shí)現(xiàn)。例中采用第二種方案,因?yàn)樗矶词┕ふ邔?duì)安全較為敏感。HowTunnelsAreBuiltAfterthegeneraldirectionforatunnelhasbeendetermined,thenextstepsareageologicalsurveyofthesiteandaseriesofboringstoobtainspecificinformationonthestratathroughwhichthetunnelmaypass.Thelengthandcrosssectionofatunnelgenerallyaregovernedbytheuseforwhichitisintended,butitsshapemustbedesignedtoprovidethebestresistancetointernalandexternalforces.Generally,acircularornearlycircularshapesischoosen.Ineveryhardrock,excavationusuallyisaccomplishedbydrillingandblasting.Insoftmedium-hardrock,atunnel-boringmachinetypicallydoestheexcavationwork.Insoftground,excavationusuallyisaccomplishedbydiggingorbyadvancingashieldandsqueezingthesoftmaterialintothetunnel.Inallcases,theexcavatedrockorearth,calledmuck,iscollectedandtransportedoutofthetunnel.Inunderwatertunneling,ashieldisusedtoadvancethework.Anothermethodofbuildinganunderwatertunnelistosinktubularsectionsintoastrengthdugatthebottomofariverorotherbodyofwater.Hard-rocktunnelingShorttunnelsthroughhardrockaredrivenonlyFromtheportalsbutlongeronesusuallyaredrivenalsofromoneormoreintermediateshafts.Somelongtunnelshavebeenbuiltwiththeaidofasmallpilottunneldrivenparalleltothemaintunnelandconnectedwithitbycrosscutsatintervals.Thepilottunnelnotonlyfurnishesadditionpointsofaccessbutalsoarouteforremovingmuckandforventilationductsanddrainagelines.Anothermethodistheheading-and-benchsystem,formallyusedonmostlargefunnel.becauseitrequiredsmalleramountsofpowerandpermittedsimultaneousdrillingandmucking(removalofexcavatedmaterial).Theupperportionofthetunnelisdrivenaheadofthelowerpartwhichiscalledthebench.Aseparatecrewisthusabletomuckinthelowerportionofthetunnelwhiletheupperportionisbeingdrilled.Withimprovementsintunnelingmethodsandmachinery,thefull-facemethodofattack,previouslyusedonlyinsmalltunnels,cameintocommonuseinbuildinglargeones.Thischangewaspartlybroughtaboutbythejumbo,amovableplatformonwhichnumerousrockdrillsaremounted.Bythisdevice,alargepartofthetunnel’sfacecanhedrilledatonetime.Thefullfacemethodbecamethecommonestandfastestwaytodriveatunnel.Soft-groundtunnelingSometunnelsaredrivenwhollyormostlythroughsoftmaterial.Inverysoftground,littleornoblastingisnecessarybecausethematerialiseasilyexcavated.Atfirst,forepolingwastheonlymethodforbuildingtunnelsthroughverysoftground.Forepolesareheavyplanksabout1.5mlongandsharpenedtoapoint.Theywereinsertedoverthetophorizontalbarofthebracingatthefaceofthetunnel.Theforepolesweredrivenintothegroundofthefacewithanoutwardinclination.Afteralltheroofpolesweredrivenforabouthalfoftheirlength,atimberwaslaidacrosstheirexposedendstocounteranystrainontheouterends.Theforepolesthusprovidedanextensionofthetunnelsupport,andthefacewasextendedunderthem.Whentheendsoftheforepoleswerereached,newtimberingsupportwasadded,andtheforepolesweredrivenintothegroundforthenextadvanceofthetunneling.Theuseofcompressedairsimplifiedworkinginsoftground.Anairlockwasbuilt,thoughwhichmenandequipmentpassed,andsufficientairpressurewasmaintainedatthetunnelfacetoholdthegroundfirmduringexcavationuntiltimberingorothersupportwaserected.Anotherdevelopmentwastheuseofhydraulicallypoweredshieldsbehindwhichcast-ironorsteelplateswereplacedonthecircumferenceofthetunnels.Theseplatesprovidedsufficientsupportforthetunnelwhiletheworkproceeded,aswellasfullworkingspaceformeninthetunnel.UnderwatertunnelingThemostdifficulttunnelingisthatundertakenatconsiderabledepthsbelowariverorotherbodyofwater.Insuchcases,waterseepsthroughporousmaterialorcrevices,subjectingtheworkinprogresstothepressureofthewaterabovethetunnelingpath.Whenthetunnelisdriventhroughstiffclay,theflowofwatermaybesmallenoughtoberemovedbypumping.Inmoreporousground,compressedairmustbeusedtoexcludewater.Theamountofairpressurethatisneededincreasesasthedepthofthetunnelincreasesbelowthesurface.Acircularshieldhasprovedtobemostefficientinresistingthepressureofsoftground,somostshield-driventunnelsarecircular.Theshieldonceconsistedofsleetplatesandanglesupports,withaheavilybraceddiaphragmacrossitsface.Thediaphragmhadanumberofopeningswithdoorssothatworkerscouldexcavatematerialinfrontoftheshield.Inafurtherdevelopment,theshieldwasshovedforwardintothesiltymaterialofariverbed,therebysqueezingdisplacedmaterialthroughthedoorsandintothetunnel,fromwhichthemuckwasremoved.Thecylindricalshelloftheshieldmayextendseveralfeetinfrontofthediaphragmtoprovideacuttingedge.Arearsection,calledthetail,extendsforseveralfeetbehindthebodyoftheshieldtoprotectworkers.Inlargeshields,anerectorarmisusedintherearsideoftheshieldtoplacethemetalsupportsegmentsalongthecircumferenceofthetunnel.Thepressureagainsttheforwardmotionofashieldmayexceed48.8Mpa.Hydraulicjacksareusedtoovercomethispressureandadvancetheshield,producingapressureofabout245MPaontheoutsidesurfaceoftheshield.Shieldscanbesteeredbyvaryingthethrustofthejacksfromleftsidetorightsideorfromtoptobottom,thusvaryingthetunneldirectionleftorrightorupordown.Thejacksshoveagainstthetunnelliningforeachforwardshove.Thecycleofoperationisforwardshove,line,muck,andthenanotherforwardshove.Theshieldusedabout1955onthethirdtubeoftheLincolnTunnelinNewYorkCitywas5.5mlongand9.6mindiameter.Itwasmovedabout81.2cmpershove,permittingthefabricationofa81.2cmsupportringbehindit.Cast-ironsegmentscommonlyareusedinworkingbehindsuchashield.Theyareerectedandboltedtogetherinashorttimetoprovidestrengthandwatertightness.InthethirdtubeoftheLincolnTunneleachsegmentis2mlong,81.2cmwide,and35.5cmthick,andweighsabout1.5tons.Thesesectionsformaringof14segmentsthatarelinkedtogetherbybolts.Theboltsweretightenedbyhandandthenbymachine.Immediatelyaftertheywereinplace,thesectionsweresealedatthejointstoensurepermanentwatertightness.Sunken-tubetunnelsWheretheriverbedsubsoilisfirmandtherivercurrentisnotexcessive,shore-fabricatedtunnelsectionscanbetowedoverapreparedtrenchintheriverbottomandsunkintoplacetoformaunderwatertunnel.Thefirstmajorprefabricated,floated.andsunkentunnelwastheDetroitRiverTunnelbetweenDetroitandWindsor,Ontrio.Thisvehiculartunnelwasbuiltin1906~1910.ThenextimportantvehiculartunnelbuiltbythismethodwasthePosey'tube,whichwascompletedin1928,ItrunsunderasaltwaterarmbetweenOaklandandAlameda.Calif.Sincethenmanyothersunken-tubetunnelshavebeenbuiltunderriversandsaltwaterbodies,notablytheTranshayTunnelbetweenOaklandandSanFrancisco.Thecylindricaltunnelsectionsusuallyaremadeofsteelinanonshoreyard.Eachsectionisshout300feet(90meters)longand28to48feet(8.5~14.6meters)indiameterAftertheopeningsateachendofasectionareclosedwithsteelbulkheads,thetubeisreadyforlaunchinginthemannerofaship.Onceinthewater,asectionisballastedwithconcreteuntilaminimumbuoyancyisattained.Thenthesectionistowedtothetunnelsite.Beforethearrivalofthesection,dredgesandunderwaterexcavatorsdigatrenchtotheproperdepthofthetunnel.Whenthetubesectionispositionedpreciselyaveritsfinallocation,additionalconcreteisaddeduntilthesectionsinksintothepreparedtrench.Allsectionsofritetunneltransportedasunkinplaceinthesameway.Eachsectionhasprojectingplatesorflangesthatfitoverorintotheprecedingsectioninthemannerofamaleandfemaleelectricalconnection.Afteronesectionandasucceedingonehavebeensunk,diversengagetheflangesandtightenthebolts.Steelplatesaresliddownaroundthejointbetweenthetwoclosedbulkheads.Thejointisthensealedwithconcretetoensurewatertightlinksbetweenthesections.Afterallofthesectionsareplacedandjoined,theyarecoveredoverwithfilltogivethemstabilityandprotection.Thusthesunken-tuteetechniqueisanunderwaterversionoftheoldcut-and-covermethod.Incompletingthework,crewsenterfromtheportalsateachendofthetunnelandcutawaythesteelbulkheadsastheyapproachthecenterofthetube.Concretethenisplacedfortheinteriorliningofthetube,providingagoodappearanceandgreatersafety.Tiles,duct,liningswiring,pumps,andpipingarethenadded.如何建設(shè)隧洞對(duì)隧洞來說,總體方向被確定之后,下一步是現(xiàn)場(chǎng)地質(zhì)測(cè)繪和一系列的鉆探以獲得遂洞通過巖層的各種信息。隧洞的長(zhǎng)度和斷面形狀一般受隧洞用途的控制.但其形狀必須設(shè)計(jì)成所給予的內(nèi)外阻力最小。一般說來,圓形或近似圓形受到歡迎。在各種堅(jiān)硬的巖石中,開挖常用鉆探和爆破來完成。在軟到中等堅(jiān)硬的巖石,一種專門的隧洞掘進(jìn)機(jī)用于開挖施工。在軟巖中,通常利用掘進(jìn)或先進(jìn)的盾構(gòu)來完成開挖。并用盾構(gòu)把軟巖擠人隧洞。在所有的情況下,把開挖的巖石或土(也叫碎屑)收集起來并運(yùn)到洞外。在地下水位以下隧洞,盾構(gòu)可提高工作效率。建設(shè)地下水位以下的隧洞另一種辦法是用沉管刃口進(jìn)行掘進(jìn),這適合于河床和其他有水體的地方。堅(jiān)硬巖石隧洞對(duì)于通過堅(jiān)硬巖石的短隧洞僅從進(jìn)口開挖,但隧洞較長(zhǎng)時(shí)可從一個(gè)或多個(gè)中間斜井開挖。一些長(zhǎng)隧洞借助小的導(dǎo)航隧洞建設(shè),而這樣導(dǎo)洞和主洞平行,且在一定間距上用橫導(dǎo)洞與主洞連起來。這樣的導(dǎo)洞不僅增加了出人口,同時(shí)為棄渣、通風(fēng)和排水增加了通道。另外一種方法是用上導(dǎo)洞和階梯式開挖,過去常用于大斷面隧洞,因?yàn)樗蟮膭?dòng)力小并且允許鉆探和出渣(把開挖材料移走)可同時(shí)作業(yè)。先開挖L面部分,當(dāng)上部被鉆孔時(shí),施工人員可在下而部分出清。隨著隧洞開挖方法和機(jī)械的改進(jìn),受到質(zhì)疑的全斷而開挖(以前在小斷面隧洞使用在建設(shè)大斷面隧洞中得到普遍使用。這一變化部分來源于鑿巖臺(tái)車的使用,它是在臺(tái)車可移動(dòng)平臺(tái)上安裝了數(shù)個(gè)巖石鉆。利用這一裝置.一個(gè)大的隧洞工作面可進(jìn)行一次性鉆孔全斷面法在隧洞開挖中成.為最普遍和進(jìn)尺最快的方法。軟巖隧洞一些隧洞全部地或部分地通過軟巖石在這種非常軟的巖石中,很少或不需要爆破,因?yàn)樗苋菀妆婚_挖。最初,矢板是用于軟巖建設(shè)隧洞的唯一方法。矢板是極重的厚板,大約有1.5m長(zhǎng),端部被削尖。在掌子面它被插人水平撐桿頂部。這樣矢板沿著巖面導(dǎo)入且向外傾斜。在所有的頂桿被導(dǎo)入其長(zhǎng)度的一半后,放置肋木,它橫過頂桿外露端以計(jì)量外端的變形。矢板可提供隧洞支撐延展,而矢板下的工作面會(huì)膨脹。當(dāng)矢板到了板的末端,加上新的肋木支撐,為了隧洞下一步進(jìn)尺,再把矢板沿隧洞面導(dǎo)入。利用壓縮空氣可以簡(jiǎn)化軟巖開挖工作。在隧洞內(nèi)裝上氣塞孔,人和設(shè)備可通過氣塞孔,在隧洞工作面氣壓保持不變.這樣在開挖時(shí),使洞室面不致發(fā)生破壞,一直到肋木或其他支撐被安裝上。另外一種方法使用液壓作為盾構(gòu)動(dòng)力,它的后面沿隧洞圓周安裝鑄鐵板或鋼板。這樣在開挖時(shí)鋼板對(duì)隧洞提供了充分支撐,除此之外在洞內(nèi)人員有一個(gè)充分的工作空間。水下隧洞施工最困難的隧洞可以斷言是在河流或其他水體以下相當(dāng)深處。在這種情況下,水會(huì)通過孔隙和裂隙滲漏,開挖則是在隧洞以上水位的水壓下進(jìn)行。在硬黏土中開挖隧洞,水量很小,可用水泵抽水。在孔隙發(fā)育的地方,用壓縮空氣方法以隔斷水流。隨著隧洞深度的增加空氣壓力也要增加。對(duì)阻止軟巖壓力來說,圓形盾構(gòu)大部分是有效的,因而盾構(gòu)開挖的隧洞是圓形的。盾構(gòu)一度由鋼板和角支撐構(gòu)成,而且有很重的拉桿隔板橫過工作面,隔板上有數(shù)個(gè)帶門的通道,以至于工人在盾構(gòu)前面可進(jìn)行開挖。更進(jìn)一步發(fā)展,盾構(gòu)可以向前推壓進(jìn)入河床泥沙物質(zhì)中,這樣通過門把泥排出并進(jìn)入隧洞,最后把碎屑泥移走。盾構(gòu)的圓形套管在隔板前可伸出幾英尺以切割隧洞周邊。后部或尾部在盾構(gòu)體后仲延幾英尺以保護(hù)作業(yè)工人。在大的盾構(gòu)中,在盾構(gòu)后部沿隧洞周邊使用升降臂來裝配金屬支撐扇形片。盾構(gòu)前移所受到的壓力會(huì)超過48.8Mpa。液壓千斤頂可克服這樣大的壓力向前推動(dòng)盾構(gòu),這時(shí)在盾構(gòu)的外表面產(chǎn)生約245MPa的壓力。利用可變推力千斤頂會(huì)使盾構(gòu)行駛,從左到右、從上到下都可做到.這樣隧洞可左、右、上、下改變它的方向。每次前移千斤頂要對(duì)隧洞襯砌加反力。每次循環(huán)是前推、襯砌、出渣,然后是另一次循環(huán)。盾構(gòu)開始應(yīng)用于1955年紐約(NewYork)城林肯隧洞的第三條管線,其長(zhǎng)度5.5m,直徑9.6m。前移一次達(dá)81.2cm,在其后可裝配81.2cm支撐環(huán)。鑄鐵扇形片在盾構(gòu)后面隧洞裝配中得到普遍使用。把鑄鐵片在洞內(nèi)進(jìn)行裝配并用螺栓固定在一起,這樣在不長(zhǎng)時(shí)間內(nèi)起到加固隧洞和防水作用。在林肯隧洞第三管道,每一扇片長(zhǎng)2m,寬8l.2cm,厚35.5cm。重大約1.5噸。每環(huán)有14個(gè)扇片組成,它們之間用螺栓固定。螺栓是先用手工然后用機(jī)械擰緊。在鑄鐵片被裝配后立即對(duì)連接處加以封堵以確保永久隔水。沉管式隧洞當(dāng)河床土層膠結(jié)。水流不時(shí),在岸上裝完的管道可搬運(yùn)到河床已挖好的溝槽處,并沉人溝槽形成地下管道第一個(gè)大的裝配式、浮動(dòng)的沉管隧道是Detroit河隧洞,位于Detroit和Winsor,Ontario之間這一車輛隧洞建于1906}1910年之間。用這一方法建成的另一條重要的車輛隧道是Posey隧道于是于1928年完成。它在位于Oakland和Alamed,Calif間的咸水海灣下運(yùn)行。從此在河流或咸水體下建了許多沉管式隧道,特別在此要提出的是奧克蘭和舊金山之間的Transbay隧洞。在岸上工地,圓筒形管道通常用鋼板制成。每條約長(zhǎng)90m,直徑8.5~14.6m。在溝槽開挖后,鋼管兩端用剛悶頭封起來,用船裝運(yùn)準(zhǔn)備下水。一旦下水用重混凝土塊對(duì)鋼管加以穩(wěn)定,直到它受的浮托力最小為止,然后把這一條鋼管拖到隧洞的現(xiàn)場(chǎng)。在鋼管運(yùn)到現(xiàn)場(chǎng)前,用挖泥機(jī)和水下開挖器開挖溝槽到隧洞適當(dāng)?shù)纳疃?。?dāng)鋼管在整個(gè)最終位置上精確定位后,增加水泥重塊一直把鋼管沉到相應(yīng)的溝槽。其他鋼管施工過程是一樣的。每一段凸板或翼緣以凸形或凹形電焊接的形式裝入相應(yīng)的部位。在前一段和后一段放入水后,潛水員要檢查凸緣并擰緊螺栓。在兩個(gè)合攏悶頭間,鋼板周圍接口要扣好。接口用凝固物封好以確保兩端之間連接不漏水。在所有部分被裝配和連接后,在進(jìn)行埋填使整個(gè)管道處于穩(wěn)定和保護(hù)狀態(tài)。沉管技術(shù)是古式切割和掩埋方法的水下形式。 完成這一工作后,工作人員從隧道的每一端進(jìn)口進(jìn)入并切除鋼悶頭,知道鋼管中央處。最后用混凝土做鋼管內(nèi)襯,這樣使鋼管內(nèi)壁光滑且更安全。瓦片、導(dǎo)管、套筒導(dǎo)線、水泵、膠管最后組裝。ShieldsAtunnelshieldisastructuralsystem,normallyconstructedofsteel,usedduringthefaceexcavationprocess.Theshieldhasanoutsideconfigurationwhichmatchesthetunnel.Theshieldprovidesprotectionforthemenandequipmentandalsofurnishedinitialgroundsupportuntilstructuralsupportscanbeinstalledwithinthetailsectionoftheshield.Theshieldalsoprovidesareactionbaseforthebreast-boardsystemusedtocontrolfacemovements.Theshieldmayhaveeitheranopenorclosedbottom.Inaclosed-bottomshield,theshieldstructureandskinprovide360-degreegroundcontactandtheweightoftheshieldrestsupontheinvertsectionoftheshieldskin.Theopenshieldhasnobottomsectionandrequiressomeadditionalprovisiontosupportitsweightandthesuperimposedweightofgroundpressurebeatingontheskin;normallythisprovisionisapairofsidedriftsdriveninadvanceofshieldexcavation.Railsorskidtracksareinstalledwithinthesesidedriftstoprovidebearingsupportfortheshield.Shieldlengthgenerallyvariesfrom1/2to314ofthetunneldiameter.Thefrontoftheshieldisgenerallyhoodedsothatthetopoftheshieldprotrudesforwardfurtherthantheinvertportion;thisprovidesadditionalprotectionforthemenworkingatthefaceandalsoeasepressureonthebreast-boards.Thesteelskinoftheshieldmayvaryfrom1.3to10cminthickness,dependingontheexpectedgroundpressures.Thetypeofsteelusedintheshieldisthesubjectofmanyargumentswithinthetunnelingfraternity.SomeprefermildsteelintheA36categorybecauseofitsductilityandcaseofweldingintheundergroundenvironmentwhereprecisionworkisdifficult.Otherspreferahigh-strengthsteelsuchasT-1becauseofitshigherstrength/weightratio.Shieldweightmayrangefrom5to100tons.MostoftheheaviestshieldsarefoundintheformerSovierUnionbecauseoftheirpreferenceforcast-ironinbothstructuralandskinelements.Propulsionfortheshieldisprovidedbyaseriesofhydraulicjacksinstalledinthetailoftheshieldthatthrustagainstthelaststeelsetthathasbeeninstalled.Thetotalrequiredthrustwillvarywithskinareaandgroundpressure.Severalshieldshavebeenconstructedwithtotalthrustcapabilitiesinexcessof10000tons.Hydraulicsystemsareusuallyself-contained,air-motorpowered,andmountedontheshield.Workingpressuresinthehydraulicsystemmayrangefrom20to70MPa.Toresistthethrustoftheshieldjacks,ahorizontalstructuremember(collarbrace)mustbeinstalledoppositeeachjacklocationandbetweentheflangesofthesteelset.Inadditionsomestructuralprovisionmustbemadefortransferringthisthrustloadintothetunnelwalls.Withoutthisprovisionthethrustwillextendthroughthecollarbracestothetunnelportal.AnEnglishman,MarcBrunel,iscreditedwithinventingtheshield.BrunelsupposedlygothisideabystudyingtheactionoftheTeredonavalis,ahighlydestructivewoodworm,whenhewasworkingattheChathamdockyard.In1818BrunelobtainedanEnglishpatentforhisrectangularshieldwhichwassubsequentlyusestoconstructthefirsttunnelundertheRiverThamesinLondon.In1869thefirstcircularshieldwasdevisedbyBarlowandGreatheadinLondonandisreferredtoastheGreathead-typeshield.Laterthatsameyear,BeachinNewYorkCityproducedasimilarshield.Thefirstuseofthecircularshieldcameduring1869whenBralowandGreatheademployedtheirdeviceintheconstructionofthe2.1mdiameterTowerSubwayundertheRiverThames.Despitethenameofthetunnel,itwasusedonlyforpedestriantraffic.Beachalsoputhiscircularshieldtoworkin1869toconstructademonstrationprojectforaproposedNewYorkCitysubwaysystem.Theprojectconsistedofa2.4mdiametertunnel,90mlong,usedtoexperimentwithasubwaycarpropelledbyairpressure.Shieldsaremostcommonlyusedingroundconditionwhereadequatestand-uptimedoesnotexist.Theadvantageoftheshieldinthistypeofground,inadditiontotheprotectionaffordedmenandequipment,isthetimeavailabletoinstallsteelribs,linerplates,orprecastconcretesegmentsunderthetailsegmentoftheshieldbeforegroundpressureandmovementbecomeadversefactors.Oneoftheprincipleproblemsassociatedwithshielduseissteering.Nonuniformgroundpressureactingontheskintendstoforcetheshieldofflineandgrade.Thisproblemisparticularlyacutewithclosedbottomshieldthatdonotrideonrailsorskidtracks.Steeringisaccomplishedbyvaryingthehydraulicpressureinindividualthrustjacks.Iftheshie
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度旅游大巴租賃與景區(qū)住宿服務(wù)合同范本4篇
- 2025年版城市軌道交通退工程款合同樣本3篇
- 二零二五年度綠色能源項(xiàng)目投資買賣擔(dān)保協(xié)議4篇
- 2025年校園暑假工代理業(yè)務(wù)專項(xiàng)合作協(xié)議3篇
- 二零二五年物流行業(yè)掛靠運(yùn)營(yíng)合作協(xié)議3篇
- 2025年文化旅游物業(yè)租賃居間服務(wù)協(xié)議2篇
- 二零二五年度毛紗加工定制合同4篇
- 二零二五年酒店客房裝修施工期間顧客權(quán)益保護(hù)協(xié)議3篇
- 二零二五年度高端鴨鴨苗供應(yīng)價(jià)格合作合同3篇
- 2025年文化遺址保護(hù)用地土地使用權(quán)租賃與文化遺產(chǎn)保護(hù)合同3篇
- 舞蹈課家長(zhǎng)會(huì)
- 2024年內(nèi)蒙古包頭市中考道德與法治試卷
- 湖南省長(zhǎng)沙市2024-2025學(xué)年高二上學(xué)期期中考試地理試卷(含答案)
- 自來水質(zhì)量提升技術(shù)方案
- 金色簡(jiǎn)約蛇年年終總結(jié)匯報(bào)模板
- 農(nóng)用地土壤環(huán)境質(zhì)量類別劃分技術(shù)指南(試行)(環(huán)辦土壤2017第97號(hào))
- 反向開票政策解讀課件
- 工程周工作計(jì)劃
- 房地產(chǎn)銷售任務(wù)及激勵(lì)制度
- 六年級(jí)語(yǔ)文下冊(cè)14文言文二則《學(xué)弈》課件
- 2024年內(nèi)蒙古中考語(yǔ)文試卷五套合卷附答案
評(píng)論
0/150
提交評(píng)論