版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
賀州市重點(diǎn)中學(xué)2024年數(shù)學(xué)高二上期末監(jiān)測模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若動點(diǎn)滿足方程,則動點(diǎn)P的軌跡方程為()A. B.C. D.2.觀察:則第行的值為()A. B.C. D.3.如圖,在棱長為1的正方體中,P、Q、R分別是棱AB、BC、的中點(diǎn),以PQR為底面作一個直三棱柱,使其另一個底面的三個頂點(diǎn)也都在正方體的表面上,則這個直三棱柱的體積為()A. B.C. D.4.已知向量,,且與互相平行,則的值為()A.-2 B.C. D.5.已知雙曲線的兩個焦點(diǎn),,是雙曲線上一點(diǎn),且,,則雙曲線的標(biāo)準(zhǔn)方程是()A. B.C. D.6.函數(shù)在的最大值是()A. B.C. D.7.在三棱錐中,,,則異面直線PC與AB所成角的余弦值是()A. B.C. D.8.設(shè)雙曲線的離心率為,則下列命題中是真命題的為()A.越大,雙曲線開口越小 B.越小,雙曲線開口越大C.越大,雙曲線開口越大 D.越小,雙曲線開口越大9.在空間直角坐標(biāo)系中,點(diǎn)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)為()A. B.C. D.10.已知是公差為3的等差數(shù)列.若,,成等比數(shù)列,則的前10項(xiàng)和()A.165 B.138C.60 D.3011.已知中,內(nèi)角,,的對邊分別為,,,,.若為直角三角形,則的面積為()A. B.C.或 D.或12.新冠肺炎疫情的發(fā)生,我國的三大產(chǎn)業(yè)均受到不同程度的影響,其中第三產(chǎn)業(yè)中的各個行業(yè)都面臨著很大的營收壓力.2020年7月國家統(tǒng)計(jì)局發(fā)布了我國上半年國內(nèi)經(jīng)濟(jì)數(shù)據(jù),如圖所示,圖1為國內(nèi)三大產(chǎn)業(yè)比重,圖2為第三產(chǎn)業(yè)中各行業(yè)比重下列關(guān)于我國上半年經(jīng)濟(jì)數(shù)據(jù)的說法正確的是()A.第一產(chǎn)業(yè)的生產(chǎn)總值與第三產(chǎn)業(yè)中“其他服務(wù)業(yè)”的生產(chǎn)總值基本持平B.第一產(chǎn)業(yè)的生產(chǎn)總值超過第三產(chǎn)業(yè)中“金融業(yè)”的生產(chǎn)總值C.若“住宿和餐飲業(yè)”生產(chǎn)總值為7500億元,則“房地產(chǎn)”生產(chǎn)總值為22500億元D.若“金融業(yè)”生產(chǎn)總值為41040億元,則第二產(chǎn)業(yè)生產(chǎn)總值為166500億元二、填空題:本題共4小題,每小題5分,共20分。13.若x,y滿足約束條件,則的最大值為_________14.已知平行四邊形內(nèi)接于橢圓,且的斜率之積為,則橢圓的離心率為________15.如圖所示,奧林匹克標(biāo)志由五個互扣的環(huán)圈組成,五環(huán)象征五大洲的團(tuán)結(jié).若從該奧林匹克標(biāo)志的五個環(huán)圈中任取2個,則這2個環(huán)圈恰好相交的概率為___________.16.已知空間向量,,則向量在向量上的投影向量的坐標(biāo)是___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)數(shù)列的前項(xiàng)和為,且.(1)求數(shù)列的通項(xiàng)公式;(2)記,數(shù)列的前項(xiàng)和為,求不等式的解集.18.(12分)已知命題p:集合為空集,命題q:不等式恒成立(1)若p為真命題,求實(shí)數(shù)a的取值范圍;(2)若為真命題,為假命題,求實(shí)數(shù)a的取值范圍19.(12分)如圖,在四棱錐中,平面平面,,,,,(Ⅰ)求證:;(Ⅱ)求二面角的余弦值;(Ⅲ)若點(diǎn)在棱上,且平面,求線段的長20.(12分)求適合下列條件的圓錐曲線的標(biāo)準(zhǔn)方程(1)中心在原點(diǎn),實(shí)軸在軸上,一個焦點(diǎn)在直線上的等軸雙曲線;(2)橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率等于,且它的一個頂點(diǎn)恰好是拋物線的焦點(diǎn);(3)經(jīng)過點(diǎn)拋物線21.(12分)已知橢圓C:(a>b>0)的離心率e為,點(diǎn)在橢圓上(1)求橢圓C的方程;(2)若A、B為橢圓的左右頂點(diǎn),過點(diǎn)(1,0)的直線交橢圓于M、N兩點(diǎn),設(shè)直線AM、BN的斜率分別為,求證為定值22.(10分)等比數(shù)列中,,(1)求的通項(xiàng)公式;(2)記為的前n項(xiàng)和.若,求m的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解題分析】根據(jù)方程可以利用幾何意義得到動點(diǎn)P的軌跡方程是以與為焦點(diǎn)的橢圓方程,從而求出軌跡方程.【題目詳解】由題意得:到與的距離之和為8,且8>4,故動點(diǎn)P的軌跡方程是以與為焦點(diǎn)的橢圓方程,故,,所以,,所以橢圓方程為.故選:A2、B【解題分析】根據(jù)數(shù)陣可知第行為,利用等差數(shù)列求和,即可得到答案;【題目詳解】根據(jù)數(shù)陣可知第行為,,故選:B3、C【解題分析】分別取的中點(diǎn),連接,利用棱柱的定義證明幾何體是三棱柱,再證明平面PQR,得到三棱柱是直三棱柱求解.【題目詳解】如圖所示:連接,分別取其中點(diǎn),連接,則,且,所以幾何體是三棱柱,又,且,所以平面,所以,同理,又,所以平面PQR,所以三棱柱是直三棱柱,因?yàn)檎襟w的棱長為1,所以,所以直三棱柱的體積為,故選:C4、A【解題分析】應(yīng)用空間向量坐標(biāo)的線性運(yùn)算求、的坐標(biāo),根據(jù)空間向量平行有,即可求的值.【題目詳解】由題設(shè),,,∵與互相平行,∴且,則,可得.故選:A5、D【解題分析】根據(jù)條件設(shè),,由條件求得,即可求得雙曲線方程.【題目詳解】設(shè),則由已知得,,又,,又,,雙曲線的標(biāo)準(zhǔn)方程為.故選:D6、C【解題分析】利用函數(shù)單調(diào)性求解.【題目詳解】解:因?yàn)楹瘮?shù)是單調(diào)遞增函數(shù),所以函數(shù)也是單調(diào)遞增函數(shù),所以.故選:C7、A【解題分析】分別取、、的中點(diǎn)、、,連接、、、、,由題意結(jié)合平面幾何的知識可得、、或其補(bǔ)角即為異面直線PC與AB所成角,再由余弦定理即可得解.【題目詳解】分別取、、的中點(diǎn)、、,連接、、、、,如圖:由可得,所以,在,,可得由中位線的性質(zhì)可得且,且,所以或其補(bǔ)角即為異面直線PC與AB所成角,在中,,所以異面直線AB與PC所成角的余弦值為.故選:A.【題目點(diǎn)撥】思路點(diǎn)睛:平移線段法是求異面直線所成角的常用方法,其基本思路是通過平移直線,把異面直線的問題化歸為共面直線問題來解決,具體步驟如下:(1)平移:平移異面直線中的一條或兩條,作出異面直線所成的角;(2)認(rèn)定:證明作出的角就是所求異面直線所成的角;(3)計(jì)算:求該角的值,常利用解三角形;(4)取舍:由異面直線所成的角的取值范圍是,當(dāng)所作的角為鈍角時,應(yīng)取它的補(bǔ)角作為兩條異面直線所成的角8、C【解題分析】根據(jù)雙曲線的性質(zhì)結(jié)合離心率對雙曲線開口大小的影響即可得解.【題目詳解】解:對于A,越大,雙曲線開口越大,故A錯誤;對于B,越小,雙曲線開口越小,故B錯誤;對于C,由,越大,則越大,雙曲線開口越大,故C正確;對于D,越小,則越小,雙曲線開口越小,故D錯誤.故選:C.9、C【解題分析】根據(jù)點(diǎn)關(guān)于原點(diǎn)對稱的性質(zhì)即可知答案.【題目詳解】由點(diǎn)關(guān)于原點(diǎn)對稱,則對稱點(diǎn)坐標(biāo)為該點(diǎn)對應(yīng)坐標(biāo)的相反數(shù),所以.故選:C10、A【解題分析】由等差數(shù)列的定義與等比數(shù)列的性質(zhì)求得首項(xiàng),然后由等差數(shù)列的前項(xiàng)和公式計(jì)算【題目詳解】因?yàn)?,,成等比?shù)列,所以,所以,解得,所以故選:A11、C【解題分析】由正弦定理化角為邊后,由余弦定理求得,然后分類討論:或求解【題目詳解】由正弦定理,可化為:,即,所以,,所以,又為直角三角形,若,則,,,,若,則,,,故選:C12、D【解題分析】根據(jù)扇形圖及柱形圖中的各產(chǎn)業(yè)與各行業(yè)所占比重,得到第三產(chǎn)業(yè)中“其他服務(wù)業(yè)”及“金融業(yè)”的生產(chǎn)總值占總生產(chǎn)總值的比重,進(jìn)而比較出AB選項(xiàng),利用“住宿和餐飲業(yè)”生產(chǎn)總值和“房地產(chǎn)”生產(chǎn)總值的比值,求出“房地產(chǎn)”生產(chǎn)總值,判斷出C選項(xiàng),利用第三產(chǎn)業(yè)中“金融業(yè)”的生產(chǎn)總值與第二產(chǎn)業(yè)的生產(chǎn)總值比值,求出第二產(chǎn)業(yè)生產(chǎn)總值,判斷D選項(xiàng).【題目詳解】A選項(xiàng),第三產(chǎn)業(yè)中“其他服務(wù)業(yè)”的生產(chǎn)總值占總生產(chǎn)總值的,因?yàn)?,所以第三產(chǎn)業(yè)中“其他服務(wù)業(yè)”的生產(chǎn)總值明顯高于第一產(chǎn)業(yè)的生產(chǎn)總值,A錯誤;B選項(xiàng),第三產(chǎn)業(yè)中“金融業(yè)”的生產(chǎn)總值占總生產(chǎn)總值的,因?yàn)椋实谝划a(chǎn)業(yè)的生產(chǎn)總值少于第三產(chǎn)業(yè)中“金融業(yè)”的生產(chǎn)總值,B錯誤;“住宿和餐飲業(yè)”生產(chǎn)總值和“房地產(chǎn)”生產(chǎn)總值的比值為,若“住宿和餐飲業(yè)”生產(chǎn)總值為7500億元,則“房地產(chǎn)”生產(chǎn)總值為億元,故C錯誤;第三產(chǎn)業(yè)中“金融業(yè)”的生產(chǎn)總值占總生產(chǎn)總值的,與第二產(chǎn)業(yè)的生產(chǎn)總值比值為,若“金融業(yè)”生產(chǎn)總值為41040億元,則第二產(chǎn)業(yè)生產(chǎn)總值為166500億元,D正確.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、3【解題分析】根據(jù)題意,畫出可行域,找出最優(yōu)解,即可求解.【題目詳解】根據(jù)題意,不等式組所表示的可行域如圖陰影部分,由圖易知,取最大值的最優(yōu)解為,故.故答案為:314、##0.5【解題分析】根據(jù)對稱性設(shè),,,根據(jù)得到,再求離心率即可.【題目詳解】由對稱性,,關(guān)于原點(diǎn)對稱,設(shè),,,,故.故答案為:15、【解題分析】利用古典概型求概率.【題目詳解】從該奧林匹克標(biāo)志的五個環(huán)圈中任取2個,共有10種情況,其中這2個環(huán)圈恰好相交的情況有4種,則所求的概率.故答案為:.16、【解題分析】根據(jù)投影向量的計(jì)算公式,計(jì)算出正確答案.【題目詳解】向量在向量上的投影向量的坐標(biāo)是.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】(1)利用與的關(guān)系求解即可;(2)首先利用裂項(xiàng)求和得到,從而得到,再解不等式即可.【小問1詳解】令,則,當(dāng)時,,當(dāng)時,也符合上式,即數(shù)列的通項(xiàng)公式為.【小問2詳解】由(1)得,則,所以故可化為:,故,故不等式的解集為.18、(1)(2)【解題分析】(1)根據(jù)判別式小于0可得;(2)根據(jù)復(fù)合命題的真假可知,p和q有且只有一個真命題,然后根據(jù)相應(yīng)范圍通過集合運(yùn)算可得.【小問1詳解】因?yàn)榧蠟榭占?,所以無實(shí)數(shù)根,即,解得,所以p為真命題時,實(shí)數(shù)a取值范圍為.【小問2詳解】由解得:,即命題q為真時,實(shí)數(shù)a的取值范圍為,易知p為假時,a的取值范圍為,q為假時,a的取值范圍為.因?yàn)闉檎婷},為假命題,則p和q有且只有一個真命題,當(dāng)p為假q為真時,實(shí)數(shù)a的取值范圍為;當(dāng)p為真q為假時,實(shí)數(shù)a的取值范圍為.綜上,實(shí)數(shù)a的取值范圍為19、(Ⅰ)見解析.(Ⅱ).(Ⅲ).【解題分析】第一問根據(jù)面面垂直的性質(zhì)和線面垂直的性質(zhì)得出線線垂直的結(jié)論,注意在書寫的時候條件不要丟就行;第二問建立空間直角坐標(biāo)系,利用法向量所成角的余弦值來求得二面角的余弦值;第三問利用向量共線的關(guān)系,得出向量的坐標(biāo),根據(jù)線面平行得出向量垂直,利用其數(shù)量積等于零,求得結(jié)果.(Ⅰ)證明:因?yàn)槠矫妗推矫?,且平面平面,因?yàn)椤?,且平面所以⊥平面因?yàn)槠矫?,所以?(Ⅱ)解:在△中,因?yàn)椋?,,所以,所以?所以,建立空間直角坐標(biāo)系,如圖所示所以,,,,,,.易知平面的一個法向量為.設(shè)平面的一個法向量為,則,即,令,則.設(shè)二面角的平面角為,可知為銳角,則,即二面角的余弦值為(Ⅲ)解:因?yàn)辄c(diǎn)在棱,所以,因?yàn)?,所以?又因?yàn)槠矫妫瑸槠矫娴囊粋€法向量,所以,即,所以所以,所以.20、(1)(2)(3)或【解題分析】(1)由已知求得,再由等軸雙曲線的性質(zhì)可求得則,由此可求得雙曲線的方程;(2)由已知求得拋物線的焦點(diǎn)為,得出橢圓的,再根據(jù)橢圓的離心率求得,由此可得出橢圓的方程;(3)設(shè)拋物線的標(biāo)準(zhǔn)方程為:或,代入點(diǎn)求解即可.【小問1詳解】解:對于直線,令,得,所以,則,所以,所以中心在原點(diǎn),實(shí)軸在軸上,一個焦點(diǎn)在直線上的等軸雙曲線的方程為;【小問2詳解】解:由得拋物線的焦點(diǎn)為,所以對于橢圓,,又橢圓的離心率為,所以,解得,所以橢圓的方程;【小問3詳解】解:因?yàn)辄c(diǎn)在第三象限,所以滿足條件的拋物線的標(biāo)準(zhǔn)方程可以是:或,代入點(diǎn)得或,解得或,所以經(jīng)過點(diǎn)的拋物線的方程為或21、(1);(2)證明見解析【解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度農(nóng)民工工資拖欠專項(xiàng)整改協(xié)議3篇
- 減肥方法及其效果研究綜述
- 二零二五年度房產(chǎn)代持保密協(xié)議范本3篇
- 新生兒心肺復(fù)蘇知識
- 臨床引起雙硫侖樣反應(yīng)特點(diǎn)、診斷標(biāo)準(zhǔn)、分度、鑒別診斷及處理要點(diǎn)
- 二零二五年度信息安全管理責(zé)任承諾(含應(yīng)急預(yù)案)2篇
- 二零二五年度his系統(tǒng)與藥品供應(yīng)鏈系統(tǒng)對接合同
- 河南省商丘市(2024年-2025年小學(xué)六年級語文)統(tǒng)編版質(zhì)量測試(上學(xué)期)試卷及答案
- 黑龍江大慶市(2024年-2025年小學(xué)六年級語文)部編版能力評測((上下)學(xué)期)試卷及答案
- 貴州商學(xué)院《概率論與隨機(jī)過程》2023-2024學(xué)年第一學(xué)期期末試卷
- 2022年中國農(nóng)業(yè)銀行(廣東分行)校園招聘筆試試題及答案解析
- 品牌管理第五章品牌體驗(yàn)課件
- 基于CAN通訊的儲能變流器并機(jī)方案及應(yīng)用分析報(bào)告-培訓(xùn)課件
- 外科醫(yī)師手術(shù)技能評分標(biāo)準(zhǔn)
- 保姆級別CDH安裝運(yùn)維手冊
- 菌草技術(shù)及產(chǎn)業(yè)化應(yīng)用課件
- GB∕T 14527-2021 復(fù)合阻尼隔振器和復(fù)合阻尼器
- 隧道二襯、仰拱施工方案
- 顫病(帕金森?。┲嗅t(yī)護(hù)理常規(guī)
- 果膠項(xiàng)目商業(yè)計(jì)劃書(模板范本)
- 旋挖鉆成孔掏渣筒沉渣處理施工工藝
評論
0/150
提交評論