版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆黑龍江省大慶市鐵人中學(xué)數(shù)學(xué)高二上期末調(diào)研試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在直三棱柱中,側(cè)面是邊長(zhǎng)為的正方形,,,且,則異面直線與所成的角為()A. B.C. D.2.等比數(shù)列的各項(xiàng)均為正數(shù),且,則()A.5 B.10C.4 D.3.過(guò)點(diǎn)且與雙曲線有相同漸近線的雙曲線方程為()A B.C. D.4.若點(diǎn)P為拋物線y=2x2上的動(dòng)點(diǎn),F(xiàn)為拋物線的焦點(diǎn),則|PF|的最小值為()A.2 B.C. D.5.已知拋物線上一點(diǎn)到其焦點(diǎn)的距離為5,雙曲線的左頂點(diǎn)為A,若雙曲線的一條漸近線與直線AM平行,則實(shí)數(shù)n的值是()A. B.C. D.6.設(shè)的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知,,,則b等于()A. B.2C. D.47.已知拋物線上的一點(diǎn),則點(diǎn)M到拋物線焦點(diǎn)F的距離等于()A.6 B.5C.4 D.28.已知橢圓,則它的短軸長(zhǎng)為()A.2 B.4C.6 D.89.已知圓,則圓C關(guān)于直線對(duì)稱(chēng)的圓的方程為()A. B.C. D.10.設(shè)是公差的等差數(shù)列,如果,那么()A. B.C. D.11.函數(shù),的值域?yàn)椋ǎ〢. B.C. D.12.圓與圓的位置關(guān)系為()A.外切 B.內(nèi)切C.相交 D.相離二、填空題:本題共4小題,每小題5分,共20分。13.直線與直線垂直,則______14.作邊長(zhǎng)為6的正三角形的內(nèi)切圓,半徑記為,在這個(gè)圓內(nèi)作內(nèi)接正三角形,然后再作新三角形的內(nèi)切圓.如此下去,第n個(gè)正三角形的內(nèi)切圓半徑記為,則______,現(xiàn)有1個(gè)半徑為的圓,2個(gè)半徑為的圓,……,個(gè)半徑為的圓,n個(gè)半徑為的圓,則所有這些圓的面積之和為_(kāi)_____15.已知單位空間向量,,滿(mǎn)足,.若空間向量滿(mǎn)足,且對(duì)于任意實(shí)數(shù),的最小值是2,則的最小值是___________.16.若橢圓和圓(c為橢圓的半焦距)有四個(gè)不同的交點(diǎn),則橢圓的離心率的取值范圍是_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知雙曲線的兩個(gè)焦點(diǎn)為的曲線C上.(1)求雙曲線C的方程;(2)記O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)Q(0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)E、F,若△OEF的面積為求直線l的方程18.(12分)如圖所示,四棱錐的底面為矩形,,,過(guò)底面對(duì)角線作與平行的平面交于點(diǎn)(1)求二面角的余弦值;(2)求與所成角的余弦值;(3)求與平面所成角的正弦值19.(12分)已知函數(shù),,其中為自然對(duì)數(shù)的底數(shù).(1)若為的極值點(diǎn),求的單調(diào)區(qū)間和最大值;(2)是否存在實(shí)數(shù),使得的最大值是?若存在,求出的值;若不存在,說(shuō)明理由.20.(12分)已知函數(shù),.(1)當(dāng)時(shí),求函數(shù)的極值;(2)若存在,使不等式成立,求實(shí)數(shù)的取值范圍.21.(12分)已知橢圓:的左、右焦點(diǎn)分別為,,離心率等于,點(diǎn),且的面積等于(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知斜率存在且不為0的直線與橢圓交于A,B兩點(diǎn),當(dāng)點(diǎn)A關(guān)于y軸的對(duì)稱(chēng)點(diǎn)在直線PB上時(shí),直線是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出此定點(diǎn);若不過(guò),請(qǐng)說(shuō)明理由22.(10分)在直三棱柱中,,,,,分別是,上的點(diǎn),且(1)求證:∥平面;(2)求平面與平面所成銳二面角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解題分析】分析得出,以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法可求得異面直線與所成的角.【題目詳解】由題意可知,,因?yàn)椋?,則,,因?yàn)槠矫?,以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,則點(diǎn)、、、,,,,因此,異面直線與所成的角為.故選:C.2、A【解題分析】利用等比數(shù)列的性質(zhì)及對(duì)數(shù)的運(yùn)算性質(zhì)求解.【題目詳解】由題有,則=5.故選:A3、C【解題分析】設(shè)與雙曲線有相同漸近線的雙曲線方程為,代入點(diǎn)的坐標(biāo),求出的值,即可的解.【題目詳解】設(shè)與雙曲線有相同漸近線的雙曲線方程為,代入點(diǎn),得,解得,所以所求雙曲線方程為,即故選:C.4、D【解題分析】根據(jù)拋物線的定義得出當(dāng)點(diǎn)P在拋物線的頂點(diǎn)時(shí),|PF|取最小值.【題目詳解】根據(jù)題意,設(shè)拋物線y=2x2上點(diǎn)P到準(zhǔn)線的距離為d,則有|PF|=d,拋物線的方程為y=2x2,即x2=y(tǒng),其準(zhǔn)線方程為y=-,∴當(dāng)點(diǎn)P在拋物線的頂點(diǎn)時(shí),d有最小值,即|PF|min=.故選:D5、C【解題分析】首先根據(jù)拋物線焦半徑公式得到,從而得到,再根據(jù)曲線的一條漸近線與直線AM平行,斜率相等求解即可.【題目詳解】由題知:,解得,拋物線.雙曲線的左頂點(diǎn)為,,因?yàn)殡p曲線的一條漸近線與直線平行,所以,解得.故選:C6、A【解題分析】由正弦定理求解即可.【題目詳解】因?yàn)?,所以故選:A7、B【解題分析】將點(diǎn)代入拋物線方程求出,再由拋物線的焦半徑公式可得答案.詳解】將點(diǎn)代入拋物線方程可得,解得則故選:B8、B【解題分析】根據(jù)橢圓短軸長(zhǎng)的定義進(jìn)行求解即可.【題目詳解】由橢圓的標(biāo)準(zhǔn)方程可知:,所以該橢圓的短軸長(zhǎng)為,故選:B9、B【解題分析】求得圓的圓心關(guān)于直線的對(duì)稱(chēng)點(diǎn),由此求得對(duì)稱(chēng)圓的方程.【題目詳解】設(shè)圓的圓心關(guān)于直線的對(duì)稱(chēng)點(diǎn)為,則,所以對(duì)稱(chēng)圓的方程為.故選:B10、D【解題分析】由已知可得,即可得解.【題目詳解】由已知可得.故選:D.11、A【解題分析】利用基本不等式可得,進(jìn)而可得,即求.【題目詳解】∵,∴,當(dāng)且僅當(dāng),即時(shí)取等號(hào),∴,,∴.故選:A.12、A【解題分析】根據(jù)兩圓半徑和、差、圓心距之間的大小關(guān)系進(jìn)行判斷即可.【題目詳解】由,該圓的圓心為,半徑為.圓圓心為,半徑為,因?yàn)閮蓤A的圓心距為,兩圓的半徑和為,所以?xún)蓤A的半徑和等于兩圓的圓心距,因此兩圓相外切,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、##【解題分析】根據(jù)兩直線垂直得,即可求出答案.【題目詳解】由直線與直線垂直得,.故答案為:.14、①;②..【解題分析】設(shè)第n個(gè)三角形的邊長(zhǎng)為,進(jìn)而根據(jù)題意求出,然后根據(jù)等面積法求出,再求出;設(shè)n個(gè)半徑為的圓的面積為并求出,進(jìn)而運(yùn)用錯(cuò)位相減法求得答案.【題目詳解】如示意圖1,設(shè)第n個(gè)三角形的邊長(zhǎng)為,易得,則是以6為首項(xiàng),為公比的等比數(shù)列,所以.如示意圖2,易得:,,所以,所以.設(shè)n個(gè)半徑為的圓的面積為,則,記所有圓的面積之和為,則,所以,兩式相減得:,即.故答案為:;.15、【解題分析】以,方向?yàn)檩S,垂直于,方向?yàn)檩S建立空間直角坐標(biāo)系,根據(jù)條件求得坐標(biāo),由二次函數(shù)求最值即可求得最小值.【題目詳解】以,方向?yàn)檩S,垂直于,方向?yàn)檩S建立空間直角坐標(biāo)系,則,由可設(shè),由是單位空間向量可得,由可設(shè),,當(dāng),的最小值是2,所以,取,,,當(dāng)時(shí),最小值為.故答案為:.16、【解題分析】當(dāng)圓的直徑介于橢圓長(zhǎng)軸和短軸長(zhǎng)度范圍之間時(shí),橢圓和圓有四個(gè)不同的焦點(diǎn),由此列不等式,解不等式求得橢圓離心率的取值范圍.【題目詳解】由于橢圓和圓有四個(gè)焦點(diǎn),故圓的直徑介于橢圓長(zhǎng)軸和短軸長(zhǎng)度范圍之間,即.由得,兩邊平方并化簡(jiǎn)得,即①.由得,兩邊平方并化簡(jiǎn)得,解得②.由①②得.故填.【題目點(diǎn)撥】本小題主要考查橢圓和圓的位置關(guān)系,考查橢圓離心率取值范圍的求法,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)雙曲線方程為(2)滿(mǎn)足條件的直線l有兩條,其方程分別為y=和【解題分析】(1)由雙曲線焦點(diǎn)可得值,進(jìn)而可得到的關(guān)系式,將點(diǎn)P代入雙曲線可得到的關(guān)系式,解方程組可求得值,從而確定雙曲線方程;(2)求直線方程采用待定系數(shù)法,首先設(shè)出方程的點(diǎn)斜式,與雙曲線聯(lián)立,求得相交的弦長(zhǎng)和O到直線的距離,代入面積公式可得到直線的斜率,求得直線方程試題解析:(1)由已知及點(diǎn)在雙曲線上得解得;所以,雙曲線的方程為(2)由題意直線的斜率存在,故設(shè)直線的方程為由得設(shè)直線與雙曲線交于、,則、是上方程的兩不等實(shí)根,且即且①這時(shí),又即所以即又適合①式所以,直線的方程為與18、(1);(2);(3).【解題分析】(1)設(shè),連接、,證明出平面,推導(dǎo)出為的中點(diǎn),然后以點(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立空間直角坐標(biāo)系,利用空間向量法可求得二面角的余弦值;(2)利用空間向量法可求得與所成角的余弦值;(3)利用空間向量法可求得與平面所成角的正弦值.【小問(wèn)1詳解】解:設(shè),則為、的中點(diǎn),連接、,因?yàn)槠矫?,平面,平面平面,則,因?yàn)闉榈闹悬c(diǎn),則為的中點(diǎn),因?yàn)?,為的中點(diǎn),則,同理可證,,平面,,,則,,以點(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標(biāo)系,則、、、、、,設(shè)平面的法向量為,,,由,取,可得,易知平面的一個(gè)法向量為,.由圖可知,二面角的平面角為銳角,因此,二面角的余弦值為.【小問(wèn)2詳解】解:,,,因此,與所成角的余弦值為.【小問(wèn)3詳解】解:,,因此,與平面所成角的正弦值為.19、(1)單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;最大值為;(2)存在,.【解題分析】(1)利用為的極值點(diǎn)求得,進(jìn)而可得函數(shù)的單調(diào)區(qū)間和最大值;(2)對(duì)導(dǎo)函數(shù),分與進(jìn)行討論,得函數(shù)的單調(diào)性進(jìn)而求得最值,再由最大值是求出的值.【題目詳解】解:.(1)∵,,∴,由,得.∴,∴,,,,∴的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;的極大值為;也即的最大值為.(2)解:∵,∴,①當(dāng)時(shí),單調(diào)遞增,得的最大值是,解得,舍去;②時(shí),由,即,當(dāng),即時(shí),∴時(shí),;時(shí),;∴的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是,又在上的最大值為,∴,∴;當(dāng),即時(shí),在單調(diào)遞增,∴的最大值是,解得,舍去;綜上:存在符合題意,此時(shí).【題目點(diǎn)撥】本題主要考查了函數(shù)的導(dǎo)數(shù)在求解函數(shù)的單調(diào)性及求解函數(shù)的最值中的應(yīng)用,還考查了函數(shù)的最值求解與分類(lèi)討論的應(yīng)用,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的條件.20、(1)函數(shù)在上遞增,在上遞減,極大值為,無(wú)極小值(2)【解題分析】(1)求出函數(shù)的導(dǎo)函數(shù),再根據(jù)導(dǎo)數(shù)的符號(hào)求得單調(diào)區(qū)間,再根據(jù)極值的定義即可得解;(2)若存在,使不等式成立,問(wèn)題轉(zhuǎn)化為,令,,利用導(dǎo)數(shù)求出函數(shù)的最大值即可得出答案.【小問(wèn)1詳解】解:當(dāng)時(shí),,則,當(dāng)時(shí),,當(dāng)時(shí),,所以函數(shù)在上遞增,在上遞減,所以函數(shù)的極大值為,無(wú)極小值;【小問(wèn)2詳解】解:若存在,使不等式成立,則,即,則問(wèn)題轉(zhuǎn)化為,令,,,當(dāng)時(shí),,當(dāng)時(shí),,所以函數(shù)在遞增,在上遞減,所以,所以.21、(1)(2)【解題分析】(1)用待定系數(shù)法求出橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線的方程為,設(shè),用“設(shè)而不求法”表示出和.表示出直線PB,把A關(guān)于y軸的對(duì)稱(chēng)點(diǎn)為帶入后整理化簡(jiǎn),即可得到,從而可以判斷出直線恒過(guò)定點(diǎn).【小問(wèn)1詳解】由題意可得:,解得:,所以橢圓的標(biāo)準(zhǔn)方程為:.【小問(wèn)2詳解】由題意可知,直線的斜率存在且不為0,設(shè)直線的方程為,設(shè)設(shè)點(diǎn)A關(guān)于y軸的對(duì)稱(chēng)點(diǎn)為.聯(lián)立方程組,消去y可得:,所以.因?yàn)橹本€PB的方程為,且點(diǎn)D在直線PB上,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度農(nóng)家樂(lè)餐飲服務(wù)與食材供應(yīng)合同4篇
- 2025年度電力設(shè)施維護(hù)司機(jī)派遣服務(wù)合同4篇
- 2025年度企業(yè)員工短期培訓(xùn)費(fèi)支付標(biāo)準(zhǔn)合同
- 二零二五年度新能源車(chē)輛采購(gòu)配送及運(yùn)營(yíng)服務(wù)合同3篇
- 二零二五年度企業(yè)法律顧問(wèn)提前終止服務(wù)合同協(xié)議書(shū)
- 二零二五年度城市綠化項(xiàng)目臨時(shí)綠化員聘用合同4篇
- 2025年度個(gè)人與企業(yè)貸款融資合作協(xié)議合同范本4篇
- 2025版門(mén)面轉(zhuǎn)讓合同范本:商業(yè)地產(chǎn)經(jīng)營(yíng)權(quán)轉(zhuǎn)讓詳細(xì)協(xié)議
- 課題申報(bào)參考:南水北調(diào)中線水源區(qū)家庭農(nóng)場(chǎng)耕地生態(tài)保護(hù)行為形成邏輯與實(shí)現(xiàn)機(jī)制研究
- 2025年度美容院美容護(hù)理產(chǎn)品代工合同4篇
- 定額〔2025〕1號(hào)文-關(guān)于發(fā)布2018版電力建設(shè)工程概預(yù)算定額2024年度價(jià)格水平調(diào)整的通知
- 2024年城市軌道交通設(shè)備維保及安全檢查合同3篇
- 電力溝施工組織設(shè)計(jì)-電纜溝
- 【教案】+同一直線上二力的合成(教學(xué)設(shè)計(jì))(人教版2024)八年級(jí)物理下冊(cè)
- 湖北省武漢市青山區(qū)2023-2024學(xué)年七年級(jí)上學(xué)期期末質(zhì)量檢測(cè)數(shù)學(xué)試卷(含解析)
- 單位往個(gè)人轉(zhuǎn)賬的合同(2篇)
- 電梯操作證及電梯維修人員資格(特種作業(yè))考試題及答案
- 科研倫理審查與違規(guī)處理考核試卷
- GB/T 44101-2024中國(guó)式摔跤課程學(xué)生運(yùn)動(dòng)能力測(cè)評(píng)規(guī)范
- 鍋爐本體安裝單位工程驗(yàn)收表格
- 高危妊娠的評(píng)估和護(hù)理
評(píng)論
0/150
提交評(píng)論