湖南省長(zhǎng)沙二十一中2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試模擬試題含解析_第1頁(yè)
湖南省長(zhǎng)沙二十一中2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試模擬試題含解析_第2頁(yè)
湖南省長(zhǎng)沙二十一中2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試模擬試題含解析_第3頁(yè)
湖南省長(zhǎng)沙二十一中2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試模擬試題含解析_第4頁(yè)
湖南省長(zhǎng)沙二十一中2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖南省長(zhǎng)沙二十一中2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.?dāng)?shù)學(xué)美的表現(xiàn)形式不同于自然美或藝術(shù)美那樣直觀,它蘊(yùn)藏于特有的抽象概念,公式符號(hào),推理論證,思維方法等之中,揭示了規(guī)律性,是一種科學(xué)的真實(shí)美.平面直角坐標(biāo)系中,曲線:就是一條形狀優(yōu)美的曲線,對(duì)于此曲線,給出如下結(jié)論:①曲線圍成的圖形的面積是;②曲線上的任意兩點(diǎn)間的距離不超過(guò);③若是曲線上任意一點(diǎn),則的最小值是其中正確結(jié)論的個(gè)數(shù)為()A. B.C. D.2.已知向量,,若,則()A.1 B.C. D.23.過(guò)雙曲線右焦點(diǎn)F作雙曲線一條漸近線的垂線,垂足為A,與另一條漸近線交于點(diǎn)B,若,則雙曲線C的離心率為()A.或 B.2或C.或 D.2或4.已知函數(shù)對(duì)于任意的滿足,其中是函數(shù)的導(dǎo)函數(shù),則下列各式正確的是()A. B.C. D.5.已知拋物線上一橫坐標(biāo)為5的點(diǎn)到焦點(diǎn)的距離為6,且該拋物線的準(zhǔn)線與雙曲線(,)的兩條漸近線所圍成的三角形面積為,則雙曲線C的離心率為()A.3 B.4C.6 D.96.已知拋物線的焦點(diǎn)為,過(guò)點(diǎn)的直線交拋物線于,兩點(diǎn),則的取值范圍是()A. B.C. D.7.在的展開式中,只有第4項(xiàng)的二項(xiàng)式系數(shù)最大,則()A.5 B.6C.7 D.88.在正方體中,分別是線段的中點(diǎn),則點(diǎn)到直線的距離是()A. B.C. D.9.已知拋物線的焦點(diǎn)為,為坐標(biāo)原點(diǎn),點(diǎn)在拋物線上,且,點(diǎn)是拋物線的準(zhǔn)線上的一動(dòng)點(diǎn),則的最小值為().A. B.C. D.10.下列函數(shù)中,以為最小正周期,且在上單調(diào)遞減的為()A. B.C. D.11.如圖所示,過(guò)拋物線的焦點(diǎn)F的直線依次交拋物線及準(zhǔn)線于點(diǎn)A,B,C.若,且,則拋物線的方程為()A. B.C. D.12.在四面體OABC中,點(diǎn)M在線段OA上,且,N為BC中點(diǎn),已知,,,則等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.圓(x+2)2+y2=4與圓(x-2)2+(y-1)2=9的位置關(guān)系為________14.橢圓的左、右焦點(diǎn)分別為,,過(guò)焦點(diǎn)的直線交該橢圓于兩點(diǎn),若的內(nèi)切圓面積為,兩點(diǎn)的坐標(biāo)分別為,,則的面積________,的值為________.15.已知函數(shù)滿足:①是奇函數(shù);②當(dāng)時(shí),.寫出一個(gè)滿足條件的函數(shù)________16.已知拋物線與直線交于D,E兩點(diǎn),若(點(diǎn)O為坐標(biāo)原點(diǎn))的面積為16,則拋物線的方程為______;過(guò)焦點(diǎn)F的直線l與拋物線交于A,B兩點(diǎn),則______三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知直線與雙曲線相交于、兩點(diǎn).(1)當(dāng)時(shí),求;(2)是否存在實(shí)數(shù),使以為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)?若存在,求出的值;若不存在,說(shuō)明理由.18.(12分)如圖,在四棱錐P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E為棱AD的中點(diǎn),異面直線PA與CD所成的角為90°.(I)在平面PAB內(nèi)找一點(diǎn)M,使得直線CM∥平面PBE,并說(shuō)明理由;(II)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.19.(12分)在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),直線l與x軸交于點(diǎn)P.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;(2)若直線l與曲線C相交于A,B兩點(diǎn),求的值20.(12分)已知,(1)若,p且q為真命題,求實(shí)數(shù)x的取值范圍;(2)若p是q的充分條件,求實(shí)數(shù)m的取值范圍21.(12分)已知函數(shù).(1)當(dāng)時(shí),求的極值;(2)當(dāng)時(shí),,求a的取值范圍.22.(10分)已知數(shù)列是公差為2的等差數(shù)列,它的前n項(xiàng)和為,且,,成等比數(shù)列(1)求的通項(xiàng)公式(2)求數(shù)列的前n項(xiàng)和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解題分析】結(jié)合已知條件寫出曲線的解析式,進(jìn)而作出圖像,對(duì)于①,通過(guò)圖像可知,所求面積為四個(gè)半圓和一個(gè)正方形面積之和,結(jié)合數(shù)據(jù)求解即可;對(duì)于②,根據(jù)圖像求出曲線上的任意兩點(diǎn)間的距離的最大值即可判斷;對(duì)于③,將問(wèn)題轉(zhuǎn)化為點(diǎn)到直線的距離,然后利用圓上一點(diǎn)到直線的距離的最小值為圓心到直線的距離減去半徑即可求解.【題目詳解】當(dāng)且時(shí),曲線的方程可化為:;當(dāng)且時(shí),曲線的方程可化為:;當(dāng)且時(shí),曲線的方程可化為:;當(dāng)且時(shí),曲線的方程可化為:,曲線的圖像如下圖所示:由上圖可知,曲線所圍成的面積為四個(gè)半圓的面積與邊長(zhǎng)為的正方形的面積之和,從而曲線所圍成的面積,故①正確;由曲線的圖像可知,曲線上的任意兩點(diǎn)間的距離的最大值為兩個(gè)半徑與正方形的邊長(zhǎng)之和,即,故②錯(cuò)誤;因?yàn)榈街本€的距離為,所以,當(dāng)最小時(shí),易知在曲線的第一象限內(nèi)的圖像上,因?yàn)榍€的第一象限內(nèi)的圖像是圓心為,半徑為的半圓,所以圓心到的距離,從而,即,故③正確,故選:C.2、B【解題分析】由向量平行,先求出的值,再由模長(zhǎng)公式求解模長(zhǎng).【題目詳解】由,則,即則,所以則故選:B3、D【解題分析】求得點(diǎn)A,B的坐標(biāo),利用轉(zhuǎn)化為坐標(biāo)比求解.【題目詳解】不妨設(shè)直線,由題意得,解得,即;由得,即,因?yàn)?,所以,所以?dāng)時(shí),,;當(dāng)時(shí),,則,故選:D4、C【解題分析】令,結(jié)合題意可得,利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,進(jìn)而得出,變形即可得出結(jié)果.【題目詳解】令,則,又,所以,令,令,所以函數(shù)在上單調(diào)遞減,在單調(diào)遞增,所以,即,則.故選:C5、A【解題分析】由題意求得拋物線的準(zhǔn)線方程為,進(jìn)而得到準(zhǔn)線與雙曲線C的漸近線圍成的三角形面積,求得,再結(jié)合和離心率的定義,即可求解.【題目詳解】由題意,拋物線上一橫坐標(biāo)為5的點(diǎn)到焦點(diǎn)的距離為6,根據(jù)拋物線定義,可得,即,所以拋物線的準(zhǔn)線方程為,又由雙曲線C的兩條漸近線方程為,則拋物線的準(zhǔn)線與雙曲線C的兩條漸近線圍成的三角形面積為,解得,又由,可得,所以雙曲線C的離心率.故選:A.6、B【解題分析】當(dāng)直線斜率存在時(shí),設(shè)直線方程,聯(lián)立方程組,結(jié)合根與系數(shù)關(guān)系可得,進(jìn)而求得取值范圍,當(dāng)斜率不存在是,可得,兩點(diǎn)坐標(biāo),進(jìn)而可得的值.【題目詳解】當(dāng)直線斜率存在時(shí),設(shè)直線方程為,,,聯(lián)立方程,得,恒成立,則,,,,,所以,當(dāng)直線斜率不存在時(shí),直線方程為,所以,,,綜上所述:,故選:B.7、B【解題分析】當(dāng)n為偶數(shù)時(shí),展開式中第項(xiàng)二項(xiàng)式系數(shù)最大,當(dāng)n為奇數(shù)時(shí),展開式中第和項(xiàng)二項(xiàng)式系數(shù)最大.【題目詳解】因?yàn)橹挥幸豁?xiàng)二項(xiàng)式系數(shù)最大,所以n為偶數(shù),故,得.故選:B8、A【解題分析】以為坐標(biāo)原點(diǎn),分別以的方向?yàn)檩S的正方向,建立空間直角坐標(biāo)系,然后,列出計(jì)算公式進(jìn)行求解即可【題目詳解】如圖,以為坐標(biāo)原點(diǎn),分別以的方向?yàn)檩S的正方向,建立空間直角坐標(biāo)系.因?yàn)?,所以,所以,則點(diǎn)到直線的距離故選:A9、A【解題分析】求出點(diǎn)坐標(biāo),做出關(guān)于準(zhǔn)線的對(duì)稱點(diǎn),利用連點(diǎn)之間相對(duì)最短得出為的最小值【題目詳解】解:拋物線的準(zhǔn)線方程為,,到準(zhǔn)線的距離為2,故點(diǎn)縱坐標(biāo)為1,把代入拋物線方程可得不妨設(shè)在第一象限,則,點(diǎn)關(guān)于準(zhǔn)線的對(duì)稱點(diǎn)為,連接,則,于是故的最小值為故選:A【題目點(diǎn)撥】本題考查了拋物線的簡(jiǎn)單幾何性質(zhì),屬于基礎(chǔ)題10、B【解題分析】A.利用正切函數(shù)的性質(zhì)判斷;B.作出的圖象判斷;C.作出的圖象判斷;D.作出的圖象判斷.【題目詳解】A.是以為最小正周期,在上單調(diào)遞增,故錯(cuò)誤;B.如圖所示:,由圖象知:函數(shù)是以為最小正周期,在上單調(diào)遞減,故正確;C.如圖所示:,由圖象知:是以為最小正周期,在上單調(diào)遞增,故錯(cuò)誤;D.如圖所示:,由圖象知:是以為最小正周期,在上單調(diào)遞增,故錯(cuò)誤;故選:B11、A【解題分析】分別過(guò)點(diǎn)作準(zhǔn)線的垂線,分別交準(zhǔn)線于點(diǎn),,設(shè),推出;根據(jù),進(jìn)而推導(dǎo)出,結(jié)合拋物線定義求出;最后由相似比推導(dǎo)出,即可求出拋物線的方程.【題目詳解】如圖分別過(guò)點(diǎn)作準(zhǔn)線的垂線,分別交準(zhǔn)線于點(diǎn),,設(shè)與交于點(diǎn).設(shè),,,由拋物線定義得:,故在直角三角形中,,,,,,,∥,,,即,,所以拋物線的方程為.故選:A12、B【解題分析】根據(jù)空間向量基本定理結(jié)合已知條件求解【題目詳解】因?yàn)镹為BC中點(diǎn),所以,因?yàn)镸在線段OA上,且,所以,所以,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、相交【解題分析】由題意知,兩圓的圓心分別為(-2,0),(2,1),故兩圓的圓心距離為,兩圓的半徑之差為1,半徑之和為5,而1<<5,所以兩圓的位置關(guān)系為相交14、①.6②.3【解題分析】由題意得,由內(nèi)切圓面積為可得其半徑,根據(jù)焦點(diǎn)三角形面積公式可得第一空答案,結(jié)合面積公式和等面積法建立等式化簡(jiǎn)即可.【題目詳解】解:由得由內(nèi)切圓面積為可得其半徑,設(shè)其內(nèi)切圓圓心為則又所以.故答案為:6;3【題目點(diǎn)撥】橢圓中常用面積公式:(1)(表示邊上的高);(2);(3)(為三角形內(nèi)切圓半徑);(4).15、(答案不唯一)【解題分析】利用函數(shù)的奇偶性及其單調(diào)性寫出函數(shù)解析式即可.【題目詳解】結(jié)合冪函數(shù)的性質(zhì)可知是奇函數(shù),當(dāng)時(shí),,則符合上述兩個(gè)條件,故答案為:(答案不唯一).16、①.②.1【解題分析】利用的面積列方程,化簡(jiǎn)求得的值,從而求得拋物線方程.將的斜率分成存在和不存在兩種情況進(jìn)行分類討論,結(jié)合根與系數(shù)關(guān)系求得.【題目詳解】依題意可知,,所以,解得.所以拋物線方程為.焦點(diǎn),當(dāng)直線的斜率不存在時(shí),直線的方程為,,即,此時(shí).當(dāng)直線的斜率存在且不為時(shí),設(shè)直線的方程為,由消去并化簡(jiǎn)得,,設(shè),則,結(jié)合拋物線的定義可知.故答案為:;三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)不存在,理由見(jiàn)解析.【解題分析】(1)當(dāng)時(shí),將直線的方程與雙曲線的方程聯(lián)立,列出韋達(dá)定理,利用弦長(zhǎng)公式可求得;(2)假設(shè)存在實(shí)數(shù),使以為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn),設(shè)、,將直線與雙曲線的方程聯(lián)立,列出韋達(dá)定理,由已知可得出,利用平面向量數(shù)量積的坐標(biāo)運(yùn)算結(jié)合韋達(dá)定理可得出,即可得出結(jié)論.【小問(wèn)1詳解】解:設(shè)點(diǎn)、,當(dāng)時(shí),聯(lián)立,可得,,由韋達(dá)定理可得,,所以,.【小問(wèn)2詳解】解:假設(shè)存在實(shí)數(shù),使以為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn),設(shè)、,聯(lián)立得,由題意可得,解得且,由韋達(dá)定理可知,因?yàn)橐詾橹睆降膱A經(jīng)過(guò)坐標(biāo)原點(diǎn),則,所以,,整理可得,該方程無(wú)實(shí)解,故不存在.18、(Ⅰ)見(jiàn)解析;(Ⅱ).【解題分析】本題考查線面平行、線線平行、向量法等基礎(chǔ)知識(shí),考查空間想象能力、分析問(wèn)題的能力、計(jì)算能力.第一問(wèn),利用線面平行的定理,先證明線線平行,再證明線面平行;第二問(wèn),可以先找到線面角,再在三角形中解出正弦值,還可以用向量法建立直角坐標(biāo)系解出正弦值.試題解析:(Ⅰ)在梯形ABCD中,AB與CD不平行.延長(zhǎng)AB,DC,相交于點(diǎn)M(M∈平面PAB),點(diǎn)M即為所求的一個(gè)點(diǎn).理由如下:由已知,BC∥ED,且BC=ED.所以四邊形BCDE是平行四邊形.從而CM∥EB.又EB平面PBE,CM平面PBE,所以CM∥平面PBE.(說(shuō)明:延長(zhǎng)AP至點(diǎn)N,使得AP=PN,則所找的點(diǎn)可以是直線MN上任意一點(diǎn))(Ⅱ)方法一:由已知,CD⊥PA,CD⊥AD,PAAD=A,所以CD⊥平面PAD.從而CD⊥PD.所以PDA是二面角P-CD-A的平面角.所以PDA=45°.設(shè)BC=1,則在Rt△PAD中,PA=AD=2.過(guò)點(diǎn)A作AH⊥CE,交CE的延長(zhǎng)線于點(diǎn)H,連接PH.易知PA⊥平面ABCD,從而PA⊥CE.于是CE⊥平面PAH.所以平面PCE⊥平面PAH.過(guò)A作AQ⊥PH于Q,則AQ⊥平面PCE.所以APH是PA與平面PCE所成的角.在Rt△AEH中,AEH=45°,AE=1,所以AH=.在Rt△PAH中,PH==,所以sinAPH==.方法二:由已知,CD⊥PA,CD⊥AD,PAAD=A,所以CD⊥平面PAD.于是CD⊥PD.從而PDA是二面角P-CD-A的平面角.所以PDA=45°.由PA⊥AB,可得PA⊥平面ABCD.設(shè)BC=1,則在Rt△PAD中,PA=AD=2.作Ay⊥AD,以A為原點(diǎn),以,的方向分別為x軸,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,則A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),所以=(1,0,-2),=(1,1,0),=(0,0,2)設(shè)平面PCE的法向量為n=(x,y,z),由得設(shè)x=2,解得n=(2,-2,1).設(shè)直線PA與平面PCE所成角為α,則sinα==.所以直線PA與平面PCE所成角的正弦值為.考點(diǎn):線線平行、線面平行、向量法.19、(1)直線l的普通方程,曲線C的直角坐標(biāo)方程(2)【解題分析】(1)直接利用轉(zhuǎn)換關(guān)系,在參數(shù)方程、極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換;(2)利用一元二次方程根和系數(shù)關(guān)系式的應(yīng)用求出結(jié)果【小問(wèn)1詳解】解:直線的參數(shù)方程為為參數(shù)),轉(zhuǎn)換為直角坐標(biāo)方程,曲線的極坐標(biāo)方程為,根據(jù),轉(zhuǎn)換為直角坐標(biāo)方程為;小問(wèn)2詳解】直線轉(zhuǎn)換為參數(shù)方程為為參數(shù)),代入,得到,所以,,所以20、(1);(2).【解題分析】(1)解一元二次不等式可得命題p,q所對(duì)集合,再求交集作答.(2)求出命題q所對(duì)集合,再利用集合的包含關(guān)系列式計(jì)算作答.【小問(wèn)1詳解】解不等式得:,則命題p所對(duì)集合,當(dāng)時(shí),解不等式得:,則命題q所對(duì)集合,由p且q為真命題,則,所以實(shí)數(shù)x的取值范圍是.【

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論