版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山東省膠州市第一中學(xué)等2024學(xué)年數(shù)學(xué)高三上期末檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),滿足約束條件,則的最大值是()A. B. C. D.2.已知是等差數(shù)列的前項(xiàng)和,若,設(shè),則數(shù)列的前項(xiàng)和取最大值時(shí)的值為()A.2020 B.20l9 C.2018 D.20173.若復(fù)數(shù),則()A. B. C. D.204.已知函數(shù)(),若函數(shù)有三個(gè)零點(diǎn),則的取值范圍是()A. B.C. D.5.已知,,,若,則()A. B. C. D.6.已知,是兩條不重合的直線,,是兩個(gè)不重合的平面,則下列命題中錯(cuò)誤的是()A.若,,則或B.若,,,則C.若,,,則D.若,,則7.中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動(dòng);“書”,指各種歷史文化知識;“數(shù)”,數(shù)學(xué).某校國學(xué)社團(tuán)開展“六藝”課程講座活動(dòng),每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“樂”不排在第一節(jié),“射”和“御”兩門課程不相鄰,則“六藝”課程講座不同的排課順序共有()種.A.408 B.120 C.156 D.2408.已知三棱錐P﹣ABC的頂點(diǎn)都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,則球O的表面積為()A. B. C. D.9.已知全集,函數(shù)的定義域?yàn)?,集合,則下列結(jié)論正確的是A. B.C. D.10.已知雙曲線的左、右頂點(diǎn)分別為,點(diǎn)是雙曲線上與不重合的動(dòng)點(diǎn),若,則雙曲線的離心率為()A. B. C.4 D.211.某市氣象部門根據(jù)2018年各月的每天最高氣溫平均數(shù)據(jù),繪制如下折線圖,那么,下列敘述錯(cuò)誤的是()A.各月最高氣溫平均值與最低氣溫平均值總體呈正相關(guān)B.全年中,2月份的最高氣溫平均值與最低氣溫平均值的差值最大C.全年中各月最低氣溫平均值不高于10°C的月份有5個(gè)D.從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值呈下降趨勢12.已知集合A,則集合()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若變量,滿足約束條件則的最大值為________.14.已知實(shí)數(shù)滿約束條件,則的最大值為___________.15.若復(fù)數(shù)(是虛數(shù)單位),則________16.函數(shù)的定義域是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某超市計(jì)劃按月訂購一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天數(shù)216362574以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫出Y的所有可能值,并估計(jì)Y大于零的概率.18.(12分)在四棱柱中,底面為正方形,,平面.(1)證明:平面;(2)若,求二面角的余弦值.19.(12分)已知函數(shù).(Ⅰ)解不等式;(Ⅱ)設(shè)其中為常數(shù).若方程在上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.20.(12分)已知函數(shù).(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若恒成立,求實(shí)數(shù)的取值范圍.21.(12分)在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程和曲線的參數(shù)方程;(2)設(shè)曲線與曲線在第二象限的交點(diǎn)為,曲線與軸的交點(diǎn)為,點(diǎn),求的周長的最大值.22.(10分)在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過點(diǎn)的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點(diǎn)。(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程:(2)若成等比數(shù)列,求a的值。
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解題分析】
作出不等式對應(yīng)的平面區(qū)域,由目標(biāo)函數(shù)的幾何意義,通過平移即可求z的最大值.【題目詳解】作出不等式組的可行域,如圖陰影部分,作直線:在可行域內(nèi)平移當(dāng)過點(diǎn)時(shí),取得最大值.由得:,故選:D【題目點(diǎn)撥】本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法,屬于基礎(chǔ)題.2、B【解題分析】
根據(jù)題意計(jì)算,,,計(jì)算,,,得到答案.【題目詳解】是等差數(shù)列的前項(xiàng)和,若,故,,,,故,當(dāng)時(shí),,,,,當(dāng)時(shí),,故前項(xiàng)和最大.故選:.【題目點(diǎn)撥】本題考查了數(shù)列和的最值問題,意在考查學(xué)生對于數(shù)列公式方法的綜合應(yīng)用.3、B【解題分析】
化簡得到,再計(jì)算模長得到答案.【題目詳解】,故.故選:.【題目點(diǎn)撥】本題考查了復(fù)數(shù)的運(yùn)算,復(fù)數(shù)的模,意在考查學(xué)生的計(jì)算能力.4、A【解題分析】
分段求解函數(shù)零點(diǎn),數(shù)形結(jié)合,分類討論即可求得結(jié)果.【題目詳解】作出和,的圖像如下所示:函數(shù)有三個(gè)零點(diǎn),等價(jià)于與有三個(gè)交點(diǎn),又因?yàn)?,且由圖可知,當(dāng)時(shí)與有兩個(gè)交點(diǎn),故只需當(dāng)時(shí),與有一個(gè)交點(diǎn)即可.若當(dāng)時(shí),時(shí),顯然??=??(??)與??=4|??|有一個(gè)交點(diǎn)??,故滿足題意;時(shí),顯然??=??(??)與??=4|??|沒有交點(diǎn),故不滿足題意;時(shí),顯然??=??(??)與??=4|??|也沒有交點(diǎn),故不滿足題意;時(shí),顯然與有一個(gè)交點(diǎn),故滿足題意.綜上所述,要滿足題意,只需.故選:A.【題目點(diǎn)撥】本題考查由函數(shù)零點(diǎn)的個(gè)數(shù)求參數(shù)范圍,屬中檔題.5、B【解題分析】
由平行求出參數(shù),再由數(shù)量積的坐標(biāo)運(yùn)算計(jì)算.【題目詳解】由,得,則,,,所以.故選:B.【題目點(diǎn)撥】本題考查向量平行的坐標(biāo)表示,考查數(shù)量積的坐標(biāo)運(yùn)算,掌握向量數(shù)量積的坐標(biāo)運(yùn)算是解題關(guān)鍵.6、D【解題分析】
根據(jù)線面平行和面面平行的性質(zhì),可判定A;由線面平行的判定定理,可判斷B;C中可判斷,所成的二面角為;D中有可能,即得解.【題目詳解】選項(xiàng)A:若,,根據(jù)線面平行和面面平行的性質(zhì),有或,故A正確;選項(xiàng)B:若,,,由線面平行的判定定理,有,故B正確;選項(xiàng)C:若,,,故,所成的二面角為,則,故C正確;選項(xiàng)D,若,,有可能,故D不正確.故選:D【題目點(diǎn)撥】本題考查了空間中的平行垂直關(guān)系判斷,考查了學(xué)生邏輯推理,空間想象能力,屬于中檔題.7、A【解題分析】
利用間接法求解,首先對6門課程全排列,減去“樂”排在第一節(jié)的情況,再減去“射”和“御”兩門課程相鄰的情況,最后還需加上“樂”排在第一節(jié),且“射”和“御”兩門課程相鄰的情況;【題目詳解】解:根據(jù)題意,首先不做任何考慮直接全排列則有(種),當(dāng)“樂”排在第一節(jié)有(種),當(dāng)“射”和“御”兩門課程相鄰時(shí)有(種),當(dāng)“樂”排在第一節(jié),且“射”和“御”兩門課程相鄰時(shí)有(種),則滿足“樂”不排在第一節(jié),“射”和“御”兩門課程不相鄰的排法有(種),故選:.【題目點(diǎn)撥】本題考查排列、組合的應(yīng)用,注意“樂”的排列對“射”和“御”兩門課程相鄰的影響,屬于中檔題.8、D【解題分析】
由題意畫出圖形,找出△PAB外接圓的圓心及三棱錐P﹣BCD的外接球心O,通過求解三角形求出三棱錐P﹣BCD的外接球的半徑,則答案可求.【題目詳解】如圖;設(shè)AB的中點(diǎn)為D;∵PA,PB,AB=4,∴△PAB為直角三角形,且斜邊為AB,故其外接圓半徑為:rAB=AD=2;設(shè)外接球球心為O;∵CA=CB,面PAB⊥面ABC,∴CD⊥AB可得CD⊥面PAB;且DC.∴O在CD上;故有:AO2=OD2+AD2?R2=(R)2+r2?R;∴球O的表面積為:4πR2=4π.故選:D.【題目點(diǎn)撥】本題考查多面體外接球表面積的求法,考查數(shù)形結(jié)合的解題思想方法,考查思維能力與計(jì)算能力,屬于中檔題.9、A【解題分析】
求函數(shù)定義域得集合M,N后,再判斷.【題目詳解】由題意,,∴.故選A.【題目點(diǎn)撥】本題考查集合的運(yùn)算,解題關(guān)鍵是確定集合中的元素.確定集合的元素時(shí)要注意代表元形式,集合是函數(shù)的定義域,還是函數(shù)的值域,是不等式的解集還是曲線上的點(diǎn)集,都由代表元決定.10、D【解題分析】
設(shè),,,根據(jù)可得①,再根據(jù)又②,由①②可得,化簡可得,即可求出離心率.【題目詳解】解:設(shè),,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故選:D.【題目點(diǎn)撥】本題考查雙曲線的方程和性質(zhì),考查了斜率的計(jì)算,離心率的求法,屬于基礎(chǔ)題和易錯(cuò)題.11、D【解題分析】
根據(jù)折線圖依次判斷每個(gè)選項(xiàng)得到答案.【題目詳解】由繪制出的折線圖知:在A中,各月最高氣溫平均值與最低氣溫平均值為正相關(guān),故A正確;在B中,全年中,2月的最高氣溫平均值與最低氣溫平均值的差值最大,故B正確;在C中,全年中各月最低氣溫平均值不高于10℃的月份有1月,2月,3月,11月,12月,共5個(gè),故C正確;在D中,從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值,先上升后下降,故D錯(cuò)誤.故選:D.【題目點(diǎn)撥】本題考查了折線圖,意在考查學(xué)生的理解能力.12、A【解題分析】
化簡集合,,按交集定義,即可求解.【題目詳解】集合,,則.故選:A.【題目點(diǎn)撥】本題考查集合間的運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、7【解題分析】
畫出不等式組表示的平面區(qū)域,數(shù)形結(jié)合,即可容易求得目標(biāo)函數(shù)的最大值.【題目詳解】作出不等式組所表示的平面區(qū)域,如下圖陰影部分所示.觀察可知,當(dāng)直線過點(diǎn)時(shí),有最大值,.故答案為:.【題目點(diǎn)撥】本題考查二次不等式組與平面區(qū)域、線性規(guī)劃,主要考查推理論證能力以及數(shù)形結(jié)合思想,屬基礎(chǔ)題.14、8【解題分析】
畫出可行域和目標(biāo)函數(shù),根據(jù)平移計(jì)算得到答案.【題目詳解】根據(jù)約束條件,畫出可行域,圖中陰影部分為可行域.又目標(biāo)函數(shù)表示直線在軸上的截距,由圖可知當(dāng)經(jīng)過點(diǎn)時(shí)截距最大,故的最大值為8.故答案為:.【題目點(diǎn)撥】本題考查了線性規(guī)劃問題,畫出圖像是解題的關(guān)鍵.15、【解題分析】
直接根據(jù)復(fù)數(shù)的代數(shù)形式四則運(yùn)算法則計(jì)算即可.【題目詳解】,.【題目點(diǎn)撥】本題主要考查復(fù)數(shù)的代數(shù)形式四則運(yùn)算法則的應(yīng)用.16、【解題分析】由,得,所以,所以原函數(shù)定義域?yàn)?,故答案?三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2).【解題分析】
(1)由前三年六月份各天的最高氣溫?cái)?shù)據(jù),求出最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù),由此能求出六月份這種酸奶一天的需求量不超過300瓶的概率.(2)當(dāng)溫度大于等于25℃時(shí),需求量為500,求出Y=900元;當(dāng)溫度在[20,25)℃時(shí),需求量為300,求出Y=300元;當(dāng)溫度低于20℃時(shí),需求量為200,求出Y=﹣100元,從而當(dāng)溫度大于等于20時(shí),Y>0,由此能估計(jì)估計(jì)Y大于零的概率.【題目詳解】解:(1)由前三年六月份各天的最高氣溫?cái)?shù)據(jù),得到最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù)為2+16+36=54,根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶,如果最高氣溫位于區(qū)間[20,25),需求量為300瓶,如果最高氣溫低于20,需求量為200瓶,∴六月份這種酸奶一天的需求量不超過300瓶的概率p.(2)當(dāng)溫度大于等于25℃時(shí),需求量為500,Y=450×2=900元,當(dāng)溫度在[20,25)℃時(shí),需求量為300,Y=300×2﹣(450﹣300)×2=300元,當(dāng)溫度低于20℃時(shí),需求量為200,Y=400﹣(450﹣200)×2=﹣100元,當(dāng)溫度大于等于20時(shí),Y>0,由前三年六月份各天的最高氣溫?cái)?shù)據(jù),得當(dāng)溫度大于等于20℃的天數(shù)有:90﹣(2+16)=72,∴估計(jì)Y大于零的概率P.【題目點(diǎn)撥】本題考查概率的求法,考查利潤的所有可能取值的求法,考查函數(shù)、古典概型等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力、空間想象能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,是中檔題.18、(1)詳見解析;(2).【解題分析】
(1)連接,設(shè),可證得四邊形為平行四邊形,由此得到,根據(jù)線面平行判定定理可證得結(jié)論;(2)以為原點(diǎn)建立空間直角坐標(biāo)系,利用二面角的空間向量求法可求得結(jié)果.【題目詳解】(1)連接,設(shè),連接,在四棱柱中,分別為的中點(diǎn),,四邊形為平行四邊形,,平面,平面,平面.(2)以為原點(diǎn),所在直線分別為軸建立空間直角坐標(biāo)系.設(shè),四邊形為正方形,,,則,,,,,,,設(shè)為平面的法向量,為平面的法向量,由得:,令,則,,由得:,令,則,,,,,二面角為銳二面角,二面角的余弦值為.【題目點(diǎn)撥】本題考查立體幾何中線面平行關(guān)系的證明、空間向量法求解二面角的問題;關(guān)鍵是能夠熟練掌握二面角的向量求法,易錯(cuò)點(diǎn)是求得法向量夾角余弦值后,未根據(jù)圖形判斷二面角為銳二面角還是鈍二面角,造成余弦值符號出現(xiàn)錯(cuò)誤.19、(Ⅰ);(Ⅱ).【解題分析】
(I)零點(diǎn)分段法,分,,討論即可;(II),分,,三種情況討論.【題目詳解】原不等式即.當(dāng)時(shí),化簡得.解得;當(dāng)時(shí),化簡得.此時(shí)無解;當(dāng)時(shí),化簡得.解得.綜上,原不等式的解集為由題意,設(shè)方程兩根為.當(dāng)時(shí),方程等價(jià)于方程.易知當(dāng),方程在上有兩個(gè)不相等的實(shí)數(shù)根.此時(shí)方程在上無解.滿足條件.當(dāng)時(shí),方程等價(jià)于方程,此時(shí)方程在上顯然沒有兩個(gè)不相等的實(shí)數(shù)根.當(dāng)時(shí),易知當(dāng),方程在上有且只有一個(gè)實(shí)數(shù)根.此時(shí)方程在上也有一個(gè)實(shí)數(shù)根.滿足條件.綜上,實(shí)數(shù)的取值范圍為.【題目點(diǎn)撥】本題考查解絕對值不等式以及方程根的個(gè)數(shù)求參數(shù)范圍,考查學(xué)生的運(yùn)算能力,是一道中檔題.20、(1)增區(qū)間為,減區(qū)間為;(2).【解題分析】
(1)將代入函數(shù)的解析式,利用導(dǎo)數(shù)可得出函數(shù)的單調(diào)區(qū)間;(2)求函數(shù)的導(dǎo)數(shù),分類討論的范圍,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,求出函數(shù)的最值可判斷是否恒成立,可得實(shí)數(shù)的取值范圍.【題目詳解】(1)當(dāng)時(shí),,則,當(dāng)時(shí),,則,此時(shí),函數(shù)為減函數(shù);當(dāng)時(shí),,則,此時(shí),函數(shù)為增函數(shù).所以,函數(shù)的增區(qū)間為,減區(qū)間為;(2),則,.①當(dāng)時(shí),即當(dāng)時(shí),,由,得,此時(shí),函數(shù)為增函數(shù);由,得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度土地租賃保證金繳納合同
- 2025年度木材行業(yè)市場調(diào)研與競爭分析合同
- 2025年建筑工程施工技術(shù)監(jiān)督建造師聘用合同范本
- 2025年專賣店裝修合同參考模板(2篇)
- 2025年個(gè)人買地建房借款合同(2篇)
- 2025年上海市二手機(jī)動(dòng)車購買合同標(biāo)準(zhǔn)版本(4篇)
- 2024年私人車位出租合同
- 2024房產(chǎn)交易合同中的稅費(fèi)承擔(dān)約定3篇
- 2024年度化工產(chǎn)品代加工合同3篇
- 2024年網(wǎng)絡(luò)安全防護(hù)與技術(shù)支持服務(wù)合同
- 2024版塑料購銷合同范本買賣
- 【高一上】【期末話收獲 家校話未來】期末家長會
- GB/T 44890-2024行政許可工作規(guī)范
- 有毒有害氣體崗位操作規(guī)程(3篇)
- 兒童常見呼吸系統(tǒng)疾病免疫調(diào)節(jié)劑合理使用專家共識2024(全文)
- 《華潤集團(tuán)全面預(yù)算管理案例研究》
- 2024-2025高考英語全國卷分類匯編之完型填空(含答案及解析)
- 2024年露天煤礦地質(zhì)勘查服務(wù)協(xié)議版
- 兩人退股協(xié)議書范文合伙人簽字
- 2024年資格考試-WSET二級認(rèn)證考試近5年真題附答案
- 2024年重慶南開(融僑)中學(xué)中考三模英語試題含答案
評論
0/150
提交評論