2023屆初升高數(shù)學(xué)銜接專(zhuān)題講義第二講 分式和根式類(lèi)問(wèn)題的延伸(精練)含解析_第1頁(yè)
2023屆初升高數(shù)學(xué)銜接專(zhuān)題講義第二講 分式和根式類(lèi)問(wèn)題的延伸(精練)含解析_第2頁(yè)
2023屆初升高數(shù)學(xué)銜接專(zhuān)題講義第二講 分式和根式類(lèi)問(wèn)題的延伸(精練)含解析_第3頁(yè)
2023屆初升高數(shù)學(xué)銜接專(zhuān)題講義第二講 分式和根式類(lèi)問(wèn)題的延伸(精練)含解析_第4頁(yè)
2023屆初升高數(shù)學(xué)銜接專(zhuān)題講義第二講 分式和根式類(lèi)問(wèn)題的延伸(精練)含解析_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年初高中銜接素養(yǎng)提升專(zhuān)題課時(shí)檢測(cè)第二講分式和根式類(lèi)問(wèn)題的延伸(精練)(原卷版)(測(cè)試時(shí)間60分鐘)單選題(1.(2022·江蘇無(wú)錫中考模擬)分式與都有意義的條件是()A.x B.x≠﹣1 C.x且x≠﹣1 D.以上都不對(duì)2.(2022·河南漯河·八年級(jí)期末)對(duì)于非負(fù)整數(shù)x,使得x2+3x+3是一個(gè)正整數(shù),則符合條件xA.3個(gè) B.4個(gè) C.5個(gè) D.6個(gè)3.(2022·陜西榆林中考模擬)已知a=+2,b=2﹣,則a2020b2019的值為()A.﹣﹣2 B.﹣+2 C.1 D.﹣14.(2022·河北·石家莊市第四十一中學(xué)一模)若式子不論取任何數(shù)總有意義,則的取值范圍是(

)A. B. C.且 D.5.(2022·重慶巫溪·八年級(jí)期末)已知,關(guān)于x的分式方程x+mx-4+3m4-x=3有增根,且mA.1 B.2 C.3 D.46.(2022·山東濰坊·八年級(jí)期末)已知關(guān)于x的分式方程x-2x+2-mxx2A.0 B.0或-8 C.-8 D.0或-8或-4填空題7.(2022·江蘇泰州·八年級(jí)期末)若分式方程kxx-1-2k-18.(2022·甘肅·平?jīng)鍪械谑袑W(xué)九年級(jí)期中)計(jì)算:=____.9(2022·陜西·九年級(jí)期末)解方程:①1x+1=2②2x+1=4③3x+1=6④4x+1=8…(1)根據(jù)你發(fā)現(xiàn)的規(guī)律直接寫(xiě)出⑤,⑥個(gè)方程及它們的解.(2)請(qǐng)你用一個(gè)含正整數(shù)n的式子表示上述規(guī)律,并求出它的解.三、解答題()10.(2022·浙江·義烏市繡湖中學(xué)教育集團(tuán)八年級(jí)階段檢測(cè))小芳在解決問(wèn)題:已知a=,求2a2﹣8a+1的值.他是這樣分析與解的:a===2﹣,∴a=2﹣,∴(a﹣2)2=3,a2﹣4a+4=3,∴a2﹣4a=﹣1,∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1請(qǐng)你根據(jù)小芳的分析過(guò)程,解決如下問(wèn)題:(1)計(jì)算:.(2)若.①求4a2﹣8a﹣1的值;②求3a3﹣12a2+9a﹣12的值.11.(2022·廣東·珠海市拱北中學(xué)八年級(jí)期中)判斷下列各式是否成立:;;.(1)類(lèi)比上述式子,再寫(xiě)出兩個(gè)同類(lèi)型的式子.(2)根據(jù)以上式子你能得出其中的規(guī)律嗎?用字母表示這一規(guī)律,并給出證明.【答案】(1),(2)規(guī)律:,證明見(jiàn)解析12.(2022·山東淄博·九年級(jí)期中)在進(jìn)行二次根式化簡(jiǎn)時(shí),我們有時(shí)會(huì)遇到如,這樣的式子,可以將其進(jìn)一步化簡(jiǎn):;,以上這種化簡(jiǎn)的方法叫做分母有理化.請(qǐng)化簡(jiǎn)下列各題(寫(xiě)出化簡(jiǎn)過(guò)程):(1);(2);(3).

2023年初高中銜接素養(yǎng)提升專(zhuān)題課時(shí)檢測(cè)第二講分式和根式類(lèi)問(wèn)題的延伸(精練)(解析版)(測(cè)試時(shí)間60分鐘)單選題(1.(2022·江蘇無(wú)錫中考模擬)分式與都有意義的條件是()A.x B.x≠﹣1 C.x且x≠﹣1 D.以上都不對(duì)【解答】解:由分式與都有意義,得2x﹣3≠0且x+1≠0,解得x≠,x≠1,[來(lái)源:Zxxk.Com]故選:C.2.(2022·河南漯河·八年級(jí)期末)對(duì)于非負(fù)整數(shù)x,使得x2+3x+3是一個(gè)正整數(shù),則符合條件xA.3個(gè) B.4個(gè) C.5個(gè) D.6個(gè)【答案】B【分析】將x+3看作一個(gè)整體,把代數(shù)式中的分子x2【詳解】解:x2=(x+3)=x+3-6+12=x-3+12∵x為非負(fù)整數(shù),x2∴x的所有可能取值為0,1,3,9,即符合條件x的個(gè)數(shù)有4個(gè),故選:B.3.(2022·陜西榆林中考模擬)已知a=+2,b=2﹣,則a2020b2019的值為()A.﹣﹣2 B.﹣+2 C.1 D.﹣1【解答】解:∵a=+2,b=2﹣,∴a2020b2019=(ab)2019?a=[(+2)(2﹣)]2019?(+2)=﹣(+2)=﹣﹣2.故選:A.4.(2022·河北·石家莊市第四十一中學(xué)一模)若式子不論取任何數(shù)總有意義,則的取值范圍是(

)A. B. C.且 D.【答案】D【詳解】解:若對(duì)任意總有意義,則恒成立,的最小值為,,即.故選:D.5.(2022·重慶巫溪·八年級(jí)期末)已知,關(guān)于x的分式方程x+mx-4+3m4-x=3有增根,且mA.1 B.2 C.3 D.4【答案】B【分析】首先解分式方程,用含有字母m的式子表示x,再根據(jù)方程有增根求出m的值,然后將m的值代入得出關(guān)于a,b的等式,再配方根據(jù)完全平方公式的非負(fù)性求出a和b的值,即可得出答案.【詳解】x+mx-4解得x=∵分式方程有增根,∴x-4=0,即x=4,∴6-m=4,解得m=2.當(dāng)m=2時(shí),2a即2(a+1)解得a=-1,b=3.則a+b=-1+3=2.故選:B.6.(2022·山東濰坊·八年級(jí)期末)已知關(guān)于x的分式方程x-2x+2-mxx2A.0 B.0或-8 C.-8 D.0或-8或-4【答案】D【分析】先求出分式方程的解,無(wú)解時(shí),解中的分母為0或解等于±2即可.【詳解】解:由x-2x+2-∵分式方程無(wú)解∴8m+4∴m=0或m=-8或-4∴0或-8或-4故答案為D.填空題7.(2022·江蘇泰州·八年級(jí)期末)若分式方程kxx-1-2k-1【答案】13【分析】先把k看作已知,解分式方程得出x與k的關(guān)系,再根據(jù)分式方程無(wú)解,進(jìn)一步即可求出k的值.【詳解】解:在方程kxx-1-2k-11-x=2解得k-2x=-2k-1∴當(dāng)k=2時(shí),上述一元一次方程,即原分式方程無(wú)解,當(dāng)k≠2時(shí),有x=-2k-1∵分式方程kxx-1∴-2k-1k-2=1,解得故答案為:138.(2022·甘肅·平?jīng)鍪械谑袑W(xué)九年級(jí)期中)計(jì)算:=____.【答案】解:原式=.故答案為:.9(2022·陜西·九年級(jí)期末)解方程:①1x+1=2②2x+1=4③3x+1=6④4x+1=8…(1)根據(jù)你發(fā)現(xiàn)的規(guī)律直接寫(xiě)出⑤,⑥個(gè)方程及它們的解.(2)請(qǐng)你用一個(gè)含正整數(shù)n的式子表示上述規(guī)律,并求出它的解.【答案】①x=0②x=1③x=2④x=3(1)x=4,x=5(2)x=n﹣1【詳解】試題分析:(1)等號(hào)左邊的分母都是x+1,第一個(gè)式子的分子是1,第二個(gè)式子的分子是2,那么第5個(gè)式子的分子是5,第6個(gè)式子的分子是6.等號(hào)右邊被減數(shù)的分母是x+1,分子的等號(hào)左邊的分子的2倍,減數(shù)是1,第一個(gè)式子的解是x=0,第二個(gè)式子的解是x=1,那么第5個(gè)式子的解是x=4.第6個(gè)式子的解是x=5..(2)由(1)得第n個(gè)式子的等號(hào)左邊的分母是x+1,分子是n,等號(hào)右邊的被減數(shù)的分母是x+1,分子是2n,減數(shù)是1,結(jié)果是x=n-1.試題解析:①x=0,②x=1,③x=2,④x=3.(1)第⑤個(gè)方程:5x+1=10第⑥個(gè)方程:6x+1=12(2)第n個(gè)方程:nx+1=2n方程兩邊都乘x+1,得n=2n-x+1解得x=n-1.三、解答題()10.(2022·浙江·義烏市繡湖中學(xué)教育集團(tuán)八年級(jí)階段檢測(cè))小芳在解決問(wèn)題:已知a=,求2a2﹣8a+1的值.他是這樣分析與解的:a===2﹣,∴a=2﹣,∴(a﹣2)2=3,a2﹣4a+4=3,∴a2﹣4a=﹣1,∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1請(qǐng)你根據(jù)小芳的分析過(guò)程,解決如下問(wèn)題:(1)計(jì)算:.(2)若.①求4a2﹣8a﹣1的值;②求3a3﹣12a2+9a﹣12的值.【答案】(1)(2)①3;②﹣18(1)解:=(-1)+(-)+(-)+…+(-)=-1;(2)解:①∵a=+1,∴a?1=,∴(a?1)2=2,∴a2?2a=1,∴4a2﹣8a﹣1=4(a2﹣2a)﹣1=4×1-1=3;②∵a2?2a=1,∴3a3﹣12a2+9a﹣12=3a(a2﹣2a)-6a2+9a-12=3a-6a2+9a-12=-6(a2﹣2a)-12=﹣18.11.(2022·廣東·珠海市拱北中學(xué)八年級(jí)期中)判斷下列各式是否成立:;;.(1)類(lèi)比上述式子,再寫(xiě)出兩個(gè)同類(lèi)型的式子.(2)根據(jù)以上式子你能得出其中的規(guī)律嗎?用字母表示這一規(guī)律,并給出證明.【答

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論