版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024年河北省唐山市灤南縣數(shù)學高三第一學期期末經(jīng)典模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在平面直角坐標系中,若不等式組所表示的平面區(qū)域內(nèi)存在點,使不等式成立,則實數(shù)的取值范圍為()A. B. C. D.2.設(shè),則()A. B. C. D.3.在平面直角坐標系中,已知點,,若動點滿足,則的取值范圍是()A. B.C. D.4.某校8位學生的本次月考成績恰好都比上一次的月考成績高出50分,則以該8位學生這兩次的月考成績各自組成樣本,則這兩個樣本不變的數(shù)字特征是()A.方差 B.中位數(shù) C.眾數(shù) D.平均數(shù)5.設(shè)過定點的直線與橢圓:交于不同的兩點,,若原點在以為直徑的圓的外部,則直線的斜率的取值范圍為()A. B.C. D.6.如圖,在中,點,分別為,的中點,若,,且滿足,則等于()A.2 B. C. D.7.南宋數(shù)學家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項之差并不相等,但是逐項差數(shù)之差或者高次差成等差數(shù)列對這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有高階等差數(shù)列,其前7項分別為1,4,8,14,23,36,54,則該數(shù)列的第19項為()(注:)A.1624 B.1024 C.1198 D.15608.已知集合,,則()A. B. C. D.9.已知集合,,則A. B.C. D.10.歷史上有不少數(shù)學家都對圓周率作過研究,第一個用科學方法尋求圓周率數(shù)值的人是阿基米德,他用圓內(nèi)接和外切正多邊形的周長確定圓周長的上下界,開創(chuàng)了圓周率計算的幾何方法,而中國數(shù)學家劉徽只用圓內(nèi)接正多邊形就求得的近似值,他的方法被后人稱為割圓術(shù).近代無窮乘積式、無窮連分數(shù)、無窮級數(shù)等各種值的表達式紛紛出現(xiàn),使得值的計算精度也迅速增加.華理斯在1655年求出一個公式:,根據(jù)該公式繪制出了估計圓周率的近似值的程序框圖,如下圖所示,執(zhí)行該程序框圖,已知輸出的,若判斷框內(nèi)填入的條件為,則正整數(shù)的最小值是A. B. C. D.11.已知命題,且是的必要不充分條件,則實數(shù)的取值范圍為()A. B. C. D.12.為雙曲線的左焦點,過點的直線與圓交于、兩點,(在、之間)與雙曲線在第一象限的交點為,為坐標原點,若,且,則雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則__________.14.已知實數(shù)、滿足,且可行域表示的區(qū)域為三角形,則實數(shù)的取值范圍為______,若目標函數(shù)的最小值為-1,則實數(shù)等于______.15.設(shè)雙曲線的左焦點為,過點且傾斜角為45°的直線與雙曲線的兩條漸近線順次交于,兩點若,則的離心率為________.16.雙曲線的焦點坐標是_______________,漸近線方程是_______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)2019年9月26日,攜程網(wǎng)發(fā)布《2019國慶假期旅游出行趨勢預(yù)測報告》,2018年國慶假日期間,西安共接待游客1692.56萬人次,今年國慶有望超過2000萬人次,成為西部省份中接待游客量最多的城市.旅游公司規(guī)定:若公司某位導游接待旅客,旅游年總收人不低于40(單位:萬元),則稱該導游為優(yōu)秀導游.經(jīng)驗表明,如果公司的優(yōu)秀導游率越高,則該公司的影響度越高.已知甲、乙家旅游公司各有導游40名,統(tǒng)計他們一年內(nèi)旅游總收入,分別得到甲公司的頻率分布直方圖和乙公司的頻數(shù)分布表如下:分組頻數(shù)(1)求的值,并比較甲、乙兩家旅游公司,哪家的影響度高?(2)從甲、乙兩家公司旅游總收人在(單位:萬元)的導游中,隨機抽取3人進行業(yè)務(wù)培訓,設(shè)來自甲公司的人數(shù)為,求的分布列及數(shù)學期望.18.(12分)已知函數(shù)u(x)=xlnx,v(x)x﹣1,m∈R.(1)令m=2,求函數(shù)h(x)的單調(diào)區(qū)間;(2)令f(x)=u(x)﹣v(x),若函數(shù)f(x)恰有兩個極值點x1,x2,且滿足1e(e為自然對數(shù)的底數(shù))求x1?x2的最大值.19.(12分)已知函數(shù)(為實常數(shù)).(1)討論函數(shù)在上的單調(diào)性;(2)若存在,使得成立,求實數(shù)的取值范圍.20.(12分)如圖所示,已知平面,,為等邊三角形,為邊上的中點,且.(Ⅰ)求證:面;(Ⅱ)求證:平面平面;(Ⅲ)求該幾何體的體積.21.(12分)在平面直角坐標系xOy中,曲線C1的參數(shù)方程為(φ為參數(shù)),在以O(shè)為極點,x軸的正半軸為極軸的極坐標系中,曲線C2是圓心為(2,),半徑為1的圓.(1)求曲線C1的普通方程和C2的直角坐標方程;(2)設(shè)M為曲線C1上的點,N為曲線C2上的點,求|MN|的取值范圍.22.(10分)十八大以來,黨中央提出要在2020年實現(xiàn)全面脫貧,為了實現(xiàn)這一目標,國家對“新農(nóng)合”(新型農(nóng)村合作醫(yī)療)推出了新政,各級財政提高了對“新農(nóng)合”的補助標準.提高了各項報銷的比例,其中門診報銷比例如下:表1:新農(nóng)合門診報銷比例醫(yī)院類別村衛(wèi)生室鎮(zhèn)衛(wèi)生院二甲醫(yī)院三甲醫(yī)院門診報銷比例60%40%30%20%根據(jù)以往的數(shù)據(jù)統(tǒng)計,李村一個結(jié)算年度門診就診人次情況如下:表2:李村一個結(jié)算年度門診就診情況統(tǒng)計表醫(yī)院類別村衛(wèi)生室鎮(zhèn)衛(wèi)生院二甲醫(yī)院三甲醫(yī)院一個結(jié)算年度內(nèi)各門診就診人次占李村總就診人次的比例70%10%15%5%如果一個結(jié)算年度每人次到村衛(wèi)生室、鎮(zhèn)衛(wèi)生院、二甲醫(yī)院、三甲醫(yī)院門診平均費用分別為50元、100元、200元、500元.若李村一個結(jié)算年度內(nèi)去門診就診人次為2000人次.(Ⅰ)李村在這個結(jié)算年度內(nèi)去三甲醫(yī)院門診就診的人次中,60歲以上的人次占了80%,從去三甲醫(yī)院門診就診的人次中任選2人次,恰好2人次都是60歲以上人次的概率是多少?(Ⅱ)如果將李村這個結(jié)算年度內(nèi)門診就診人次占全村總就診人次的比例視為概率,求李村這個結(jié)算年度每人次用于門診實付費用(報銷后個人應(yīng)承擔部分)的分布列與期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
依據(jù)線性約束條件畫出可行域,目標函數(shù)恒過,再分別討論的正負進一步確定目標函數(shù)與可行域的基本關(guān)系,即可求解【詳解】作出不等式對應(yīng)的平面區(qū)域,如圖所示:其中,直線過定點,當時,不等式表示直線及其左邊的區(qū)域,不滿足題意;當時,直線的斜率,不等式表示直線下方的區(qū)域,不滿足題意;當時,直線的斜率,不等式表示直線上方的區(qū)域,要使不等式組所表示的平面區(qū)域內(nèi)存在點,使不等式成立,只需直線的斜率,解得.綜上可得實數(shù)的取值范圍為,故選:B.【點睛】本題考查由目標函數(shù)有解求解參數(shù)取值范圍問題,分類討論與數(shù)形結(jié)合思想,屬于中檔題2、D【解析】
結(jié)合指數(shù)函數(shù)及對數(shù)函數(shù)的單調(diào)性,可判斷出,,,即可選出答案.【詳解】由,即,又,即,,即,所以.故選:D.【點睛】本題考查了幾個數(shù)的大小比較,考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性的應(yīng)用,屬于基礎(chǔ)題.3、D【解析】
設(shè)出的坐標為,依據(jù)題目條件,求出點的軌跡方程,寫出點的參數(shù)方程,則,根據(jù)余弦函數(shù)自身的范圍,可求得結(jié)果.【詳解】設(shè),則∵,∴∴∴為點的軌跡方程∴點的參數(shù)方程為(為參數(shù))則由向量的坐標表達式有:又∵∴故選:D【點睛】考查學生依據(jù)條件求解各種軌跡方程的能力,熟練掌握代數(shù)式轉(zhuǎn)換,能夠利用三角換元的思想處理軌跡中的向量乘積,屬于中檔題.求解軌跡方程的方法有:①直接法;②定義法;③相關(guān)點法;④參數(shù)法;⑤待定系數(shù)法4、A【解析】
通過方差公式分析可知方差沒有改變,中位數(shù)、眾數(shù)和平均數(shù)都發(fā)生了改變.【詳解】由題可知,中位數(shù)和眾數(shù)、平均數(shù)都有變化.本次和上次的月考成績相比,成績和平均數(shù)都增加了50,所以沒有改變,根據(jù)方差公式可知方差不變.故選:A【點睛】本題主要考查樣本的數(shù)字特征,意在考查學生對這些知識的理解掌握水平.5、D【解析】
設(shè)直線:,,,由原點在以為直徑的圓的外部,可得,聯(lián)立直線與橢圓方程,結(jié)合韋達定理,即可求得答案.【詳解】顯然直線不滿足條件,故可設(shè)直線:,,,由,得,,解得或,,,,,,解得,直線的斜率的取值范圍為.故選:D.【點睛】本題解題關(guān)鍵是掌握橢圓的基礎(chǔ)知識和圓錐曲線與直線交點問題時,通常用直線和圓錐曲線聯(lián)立方程組,通過韋達定理建立起目標的關(guān)系式,考查了分析能力和計算能力,屬于中檔題.6、D【解析】
選取為基底,其他向量都用基底表示后進行運算.【詳解】由題意是的重心,,∴,,∴,故選:D.【點睛】本題考查向量的數(shù)量積,解題關(guān)鍵是選取兩個不共線向量作為基底,其他向量都用基底表示參與運算,這樣做目標明確,易于操作.7、B【解析】
根據(jù)高階等差數(shù)列的定義,求得等差數(shù)列的通項公式和前項和,利用累加法求得數(shù)列的通項公式,進而求得.【詳解】依題意:1,4,8,14,23,36,54,……兩兩作差得:3,4,6,9,13,18,……兩兩作差得:1,2,3,4,5,……設(shè)該數(shù)列為,令,設(shè)的前項和為,又令,設(shè)的前項和為.易,,進而得,所以,則,所以,所以.故選:B【點睛】本小題主要考查新定義數(shù)列的理解和運用,考查累加法求數(shù)列的通項公式,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于中檔題.8、D【解析】
先求出集合B,再與集合A求交集即可.【詳解】由已知,,故,所以.故選:D.【點睛】本題考查集合的交集運算,考查學生的基本運算能力,是一道容易題.9、D【解析】
因為,,所以,,故選D.10、B【解析】
初始:,,第一次循環(huán):,,繼續(xù)循環(huán);第二次循環(huán):,,此時,滿足條件,結(jié)束循環(huán),所以判斷框內(nèi)填入的條件可以是,所以正整數(shù)的最小值是3,故選B.11、D【解析】
求出命題不等式的解為,是的必要不充分條件,得是的子集,建立不等式求解.【詳解】解:命題,即:,是的必要不充分條件,,,解得.實數(shù)的取值范圍為.故選:.【點睛】本題考查根據(jù)充分、必要條件求參數(shù)范圍,其思路方法:(1)解決此類問題一般是把充分條件、必要條件或充要條件轉(zhuǎn)化為集合之間的關(guān)系,然后根據(jù)集合之間關(guān)系列出關(guān)于參數(shù)的不等式(組)求解.(2)求解參數(shù)的取值范圍時,一定要注意區(qū)間端點值的檢驗.12、D【解析】
過點作,可得出點為的中點,由可求得的值,可計算出的值,進而可得出,結(jié)合可知點為的中點,可得出,利用勾股定理求得(為雙曲線的右焦點),再利用雙曲線的定義可求得該雙曲線的離心率的值.【詳解】如下圖所示,過點作,設(shè)該雙曲線的右焦點為,連接.,.,,,為的中點,,,,,由雙曲線的定義得,即,因此,該雙曲線的離心率為.故選:D.【點睛】本題考查雙曲線離心率的求解,解題時要充分分析圖形的形狀,考查推理能力與計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】解:由題意可知:.14、【解析】
作出不等式組對應(yīng)的平面區(qū)域,利用目標函數(shù)的幾何意義,結(jié)合目標函數(shù)的最小值,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出可行域如圖,則要為三角形需滿足在直線下方,即,;目標函數(shù)可視為,則為斜率為1的直線縱截距的相反數(shù),該直線截距最大在過點時,此時,直線:,與:的交點為,該點也在直線:上,故,故答案為:;.【點睛】本題主要考查線性規(guī)劃的應(yīng)用,利用目標函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學思想是解決此類問題的基本方法,屬于基礎(chǔ)題.15、【解析】
設(shè)直線的方程為,與聯(lián)立得到A點坐標,由得,,代入可得,即得解.【詳解】由題意,直線的方程為,與聯(lián)立得,,由得,,從而,即,從而離心率.故答案為:【點睛】本題考查了雙曲線的離心率,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.16、【解析】
通過雙曲線的標準方程,求解,,即可得到所求的結(jié)果.【詳解】由雙曲線,可得,,則,所以雙曲線的焦點坐標是,漸近線方程為:.故答案為:;.【點睛】本題主要考查了雙曲線的簡單性質(zhì)的應(yīng)用,考查了運算能力,屬于容易題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),乙公司影響度高;(2)見解析,【解析】
(1)利用各小矩形的面積和等于1可得a,由導游人數(shù)為40人可得b,再由總收人不低于40可計算出優(yōu)秀率;(2)易得總收入在中甲公司有4人,乙公司有2人,則甲公司的人數(shù)的值可能為1,2,3,再計算出相應(yīng)取值的概率即可.【詳解】(1)由直方圖知,,解得,由頻數(shù)分布表中知:,解得.所以,甲公司的導游優(yōu)秀率為:,乙公司的導游優(yōu)秀率為:,由于,所以乙公司影響度高.(2)甲公司旅游總收入在中的有人,乙公司旅游總收入在中的有2人,故的可能取值為1,2,3,易知:,;.所以的分布列為:123P.【點睛】本題考查頻率分布直方圖、隨機變量的分布列與期望,考查學生數(shù)據(jù)處理與數(shù)學運算的能力,是一道中檔題.18、(1)單調(diào)遞增區(qū)間是(0,e),單調(diào)遞減區(qū)間是(e,+∞)(2)【解析】
(1)化簡函數(shù)h(x),求導,根據(jù)導數(shù)和函數(shù)的單調(diào)性的關(guān)系即可求出(2)函數(shù)f(x)恰有兩個極值點x1,x2,則f′(x)=lnx﹣mx=0有兩個正根,由此得到m(x2﹣x1)=lnx2﹣lnx1,m(x2+x1)=lnx2+lnx1,消參數(shù)m化簡整理可得ln(x1x2)=ln?,設(shè)t,構(gòu)造函數(shù)g(t)=()lnt,利用導數(shù)判斷函數(shù)的單調(diào)性,求出函數(shù)的最大值即可求出x1?x2的最大值.【詳解】(1)令m=2,函數(shù)h(x),∴h′(x),令h′(x)=0,解得x=e,∴當x∈(0,e)時,h′(x)>0,當x∈(e,+∞)時,h′(x)<0,∴函數(shù)h(x)單調(diào)遞增區(qū)間是(0,e),單調(diào)遞減區(qū)間是(e,+∞)(2)f(x)=u(x)﹣v(x)=xlnxx+1,∴f′(x)=1+lnx﹣mx﹣1=lnx﹣mx,∵函數(shù)f(x)恰有兩個極值點x1,x2,∴f′(x)=lnx﹣mx=0有兩個不等正根,∴l(xiāng)nx1﹣mx1=0,lnx2﹣mx2=0,兩式相減可得lnx2﹣lnx1=m(x2﹣x1),兩式相加可得m(x2+x1)=lnx2+lnx1,∴∴l(xiāng)n(x1x2)=ln?,設(shè)t,∵1e,∴1<t≤e,設(shè)g(t)=()lnt,∴g′(t),令φ(t)=t2﹣1﹣2tlnt,∴φ′(t)=2t﹣2(1+lnt)=2(t﹣1﹣lnt),再令p(t)=t﹣1﹣lnt,∴p′(t)=10恒成立,∴p(t)在(1,e]單調(diào)遞增,∴φ′(t)=p(t)>p(1)=1﹣1﹣ln1=0,∴φ(t)在(1,e]單調(diào)遞增,∴g′(t)=φ(t)>φ(1)=1﹣1﹣2ln1=0,∴g(t)在(1,e]單調(diào)遞增,∴g(t)max=g(e),∴l(xiāng)n(x1x2),∴x1x2故x1?x2的最大值為.【點睛】本題考查了利用導數(shù)求函數(shù)的最值和最值,考查了函數(shù)與方程的思想,轉(zhuǎn)化與化歸思想,屬于難題19、(1)見解析(2)【解析】
(1)分類討論的值,利用導數(shù)證明單調(diào)性即可;(2)利用導數(shù)分別得出,,時,的最小值,即可得出實數(shù)的取值范圍.【詳解】(1),.當即時,,,此時,在上單調(diào)遞增;當即時,時,,在上單調(diào)遞減;時,,在上單調(diào)遞增;當即時,,,此時,在上單調(diào)遞減;(2)當時,因為在上單調(diào)遞增,所以的最小值為,所以當時,在上單調(diào)遞減,在上單調(diào)遞增所以的最小值為.因為,所以,.所以,所以.當時,在上單調(diào)遞減所以的最小值為因為,所以,所以,綜上,.【點睛】本題主要考查了利用導數(shù)證明函數(shù)的單調(diào)性以及利用導數(shù)研究函數(shù)的存在性問題,屬于中檔題.20、(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ).【解析】
(I)取的中點,連接,通過證明四邊形為平行四邊形,證得,由此證得平面.(II)利用,證得平面,從而得到平面,由此證得平面平面.(III)作交于點,易得面,利用棱錐的體積公式,計算出棱錐的體積.【詳解】(Ⅰ)取的中點,連接,則,,故四邊形為平行四邊形.故.又面,平面,所以面.(Ⅱ)為等邊三角形,為中點,所以.又,所以面.又,故面,所以面平面.(Ⅲ)幾何體是四棱錐,作交于點,即面,.【點睛】本小題主要考查線面平行的證明,考查面面垂直的證明,考查四棱錐體積的求法,考查空間想象能力,所以中檔題.21、(1)C1:y2=1,C2:x2+(y﹣2)2=1;(2)[0,1]【解析】
(Ⅰ)消去參數(shù)φ可得C1的直角坐標方程,易得曲線C2的圓心的直角坐標為(0,2),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025下半年安徽省馬鞍山和縣事業(yè)單位招聘21人歷年高頻重點提升(共500題)附帶答案詳解
- 2025下半年四川省安岳縣事業(yè)單位招聘108人歷年高頻重點提升(共500題)附帶答案詳解
- 2025上海地鐵第一運營限公司維護保障檢修工(儲備)招聘50人高頻重點提升(共500題)附帶答案詳解
- 2025上半年江蘇省蘇州昆山市周莊鎮(zhèn)招聘24人歷年高頻重點提升(共500題)附帶答案詳解
- 2025上半年四川自貢市屬事業(yè)單位考試聘用工作人員121人高頻重點提升(共500題)附帶答案詳解
- 2025上半年四川省文學藝術(shù)界聯(lián)合會直屬事業(yè)單位招聘擬聘用人員歷年高頻重點提升(共500題)附帶答案詳解
- 2025上半年內(nèi)蒙古自治區(qū)科技信息傳播服務(wù)保障中心招聘工作人員高頻重點提升(共500題)附帶答案詳解
- 2025《前進論壇》雜志社公開招聘應(yīng)屆高校畢業(yè)生1人高頻重點提升(共500題)附帶答案詳解
- 體育公園綠化改造施工合同
- 醫(yī)療器械品牌授權(quán)政策
- 高分子材料在能源存儲中的應(yīng)用
- 我國農(nóng)村社會保障制度存在的問題分析及對策樣本
- 國內(nèi)外研究現(xiàn)狀及發(fā)展趨勢(含文獻綜述)
- 西晉的短暫統(tǒng)一和北方各族的內(nèi)遷 一等獎
- 最高人民法院民事審判第一庭裁判觀點侵權(quán)責任卷
- 《多目標優(yōu)化方法》課件
- 闌尾惡性腫瘤護理查房
- 制作旅行計劃書
- 《康復護理??啤氛n件
- 駕照體檢表完整版本
- 品質(zhì)部規(guī)劃方案
評論
0/150
提交評論