版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一下數學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.右邊莖葉圖記錄了甲、乙兩組各十名學生在高考前體檢中的體重(單位:).記甲組數據的眾數與中位數分別為,乙組數據的眾數與中位數分別為,則()A. B.C. D.2.在正方體中,直線與平面所成角的正弦值為()A. B. C. D.3.為了得到函數的圖象,可以將函數的圖象()A.向左平移 B.向右平移C.向左平移 D.向右平移4.設x,y滿足約束條件,則z=x-y的取值范圍是A.[–3,0] B.[–3,2] C.[0,2] D.[0,3]5.向正方形ABCD內任投一點P,則“的面積大于正方形ABCD面積的”的概率是()A. B. C. D.6.已知、是球的球面上的兩點,,點為該球面上的動點,若三棱錐體積的最大值為,則球的表面積為()A. B. C. D.7.甲、乙、丙、丁四名運動員參加奧運會射擊項目選拔賽,四人的平均成績和方差如下表所示,從這四個人中選擇一人參加奧運會射擊項目比賽,最佳人選是()人數據甲乙丙丁平均數8.68.98.98.2方差3.53.52.15.6A.甲 B.乙 C.丙 D.丁8.在直三棱柱(側棱垂直于底面)中,若,,,則其外接球的表面積為()A. B. C. D.9.對某班學生一次英語測試的成績分析,各分數段的分布如下圖(分數取整數),由此,估計這次測驗的優(yōu)秀率(不小于80分)為()A.92% B.24% C.56% D.76%10.設正項等比數列的前項和為,若,,則公比()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,則______.12.設實數滿足,則的最小值為_____13.魯班鎖是中國傳統的智力玩具,起源于古代漢族建筑中首創(chuàng)的榫卯結構,這種三維的拼插器具內部的凹凸部分(即榫卯結構)嚙合,十分巧妙,外觀看是嚴絲合縫的十字立方體,其上下、左右、前后完全對稱.從外表上看,六根等長的正四棱柱體分成三組,經榫卯起來,如圖3,若正四棱柱體的高為,底面正方形的邊長為,現將該魯班鎖放進一個球形容器內,則該球形容器的表面積的最小值為__________.(容器壁的厚度忽略不計)14.已知的三邊分別是,且面積,則角__________.15.若角的終邊過點,則______.16.已知圓錐如圖所示,底面半徑為,母線長為,則此圓錐的外接球的表面積為___.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.(1)已知數列的前項和滿足,求數列的通項公式;(2)數列滿足,(),求數列的通項公式.18.在中,、、分別是內角、、的對邊,且.(1)求角的大??;(2)若,的面積為,求的周長.19.已知{an}是等差數列,設數列{bn}的前n項和為Sn,且2bn=b1(1+Sn),bn≠0,又a2b2=4,a7+b3=1.(1)求{an}和{bn}的通項公式;(2)令cn=anbn(n∈N*),求{cn}的前n項和Tn20.已知數列滿足,.(1)證明:是等比數列;(2)求數列的前n項和.21.王某2017年12月31日向銀行貸款元,銀行貸款年利率為,若此貸款分十年還清(2027年12月31日還清),每年年底等額還款(每次還款金額相同),設第年末還款后此人在銀行的欠款額為元.(1)設每年的還款額為元,請用表示出;(2)求每年的還款額(精確到元).
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】甲組數據的眾數為x1=64,乙組數據的眾數為x2=66,則x1<x2;甲組數據的中位數為y1==65,乙組數據的中位數為y2==66.5,則y1<y2.2、C【解析】
由題,連接,設其交平面于點易知平面,即(或其補角)為與平面所成的角,再利用等體積法求得AO的長度,即可求得的長度,可得結果.【詳解】設正方體的邊長為1,如圖,連接,設其交平面于點,則易知,,又,所以平面,即得平面.在三棱錐中,由等體積法知,,即,解得,所以.連接,則(或其補角)為與平面所成的角.在中,.故選C.【點睛】本題考查了立體幾何中線面角的求法,作出線面角是解題的關鍵,求高的長度會用到等體積法,屬于中檔題.3、B【解析】
利用的圖象變換規(guī)律,即可求解,得出結論.【詳解】由題意,函數,,又由,故把函數的圖象上所有的點,向右平移個單位長度,可得的圖象,故選:B.【點睛】本題主要考查了三角函數的圖象變換規(guī)律,其中解答中熟記三角函數的圖象變換是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.4、B【解析】作出約束條件表示的可行域,如圖中陰影部分所示.目標函數即,易知直線在軸上的截距最大時,目標函數取得最小值;在軸上的截距最小時,目標函數取得最大值,即在點處取得最小值,為;在點處取得最大值,為.故的取值范圍是[–3,2].所以選B.【名師點睛】線性規(guī)劃的實質是把代數問題幾何化,即運用數形結合的思想解題.需要注意的是:一,準確無誤地作出可行域;二,畫目標函數所對應的直線時,要注意與約束條件中的直線的斜率進行比較,避免出錯;三,一般情況下,目標函數的最大或最小值會在可行域的端點處或邊界上取得.5、C【解析】
由題意,求出滿足題意的點所在區(qū)域的面積,利用面積比求概率.【詳解】由題意,設正方形的邊長為1,則正方形的面積為1,要使的面積大于正方形面積的,需要到的距離大于,即點所在區(qū)域面積為,由幾何概型得,的面積大于正方形面積的的概率為.故選:C.【點睛】本題考查幾何概型的概率求法,解題的關鍵是明確概率模型,屬于基礎題.6、A【解析】
當點位于垂直于面的直徑端點時,三棱錐的體積最大,利用三棱錐體積的最大值為,求出半徑,即可求出球的表面積.【詳解】如圖所示,當點位于垂直于面的直徑端點時,三棱錐的體積最大,設球的半徑為,此時,.因此,球的表面積為.故選:A.【點睛】本題考查球的半徑與表面積的計算,確定點的位置是關鍵,考查分析問題和解決問題的能力,屬于中等題.7、C【解析】
甲,乙,丙,丁四個人中乙和丙的平均數最大且相等,甲,乙,丙,丁四個人中丙的方差最小,說明丙的成績最穩(wěn)定,得到丙是最佳人選.【詳解】甲,乙,丙,丁四個人中乙和丙的平均數最大且相等,甲,乙,丙,丁四個人中丙的方差最小,說明丙的成績最穩(wěn)定,綜合平均數和方差兩個方面說明丙成績即高又穩(wěn)定,丙是最佳人選,故選:C.【點睛】本題考查平均數和方差的實際應用,考查數據處理能力,求解時注意方差越小數據越穩(wěn)定.8、A【解析】
根據題意,將直三棱柱擴充為長方體,其體對角線為其外接球的直徑,可得半徑,即可求出外接球的表面積.【詳解】∵,,∠ABC=90°,∴將直三棱柱擴充為長、寬、高為2、2、3的長方體,其體對角線為其外接球的直徑,長度為,∴其外接球的半徑為,表面積為=17π.故選:A.【點睛】本題考查幾何體外接球,通常將幾何體進行割補成長方體,幾何體外接球等同于長方體外接球,利用長方體外接球直徑等于體對角線長求出半徑,再求出球的體積和表面積即可,屬于簡單題.9、C【解析】試題分析:.故C正確.考點:頻率分布直方圖.10、D【解析】
根據題意,求得,結合,即可求解,得到答案.【詳解】由題意,正項等比數列滿足,,即,,所以,又由,因為,所以.故選:D.【點睛】本題主要考查了的等比數列的通項公式,以及等比數列的前n項和公式的應用,其中解答中熟記等比數列的通項公式,以及等比數列的前n項和公式,合理運算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由,然后利用兩角差的正切公式可計算出的值.【詳解】.故答案為:.【點睛】本題考查利用兩角差的正切公式求值,解題的關鍵就是弄清所求角與已知角之間的關系,考查計算能力,屬于基礎題.12、1.【解析】
由約束條件作出可行域,化目標函數為直線方程的斜截式,數形結合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數得答案.【詳解】解:由實數滿足作出可行域如圖,
由圖形可知:.
令,化為,
由圖可知,當直線過點時,直線在軸上的截距最小,有最小值為1.
故答案為:1.【點睛】本題考查簡單的線性規(guī)劃,考查了數形結合的解題思想方法,是中檔題.13、【解析】表面積最小的球形容器可以看成長、寬、高分別為1、2、6的長方體的外接球.設其半徑為R,,所以該球形容器的表面積的最小值為.【點睛】將表面積最小的球形容器,看成其中兩個正四棱柱的外接球,求其半徑,進而求體積.14、【解析】試題分析:由,可得,整理得,即,所以.考點:余弦定理;三角形的面積公式.15、-2【解析】
由正切函數定義計算.【詳解】根據正切函數定義:.故答案為-2.【點睛】本題考查三角函數的定義,掌握三角函數定義是解題基礎.16、【解析】
根據圓錐的底面和外接球的截面性質可得外接球的球心在上,再根據勾股定理可得求的半徑.【詳解】由圓錐的底面和外接球的截面性質可得外接球的球心在上,設球心為,球的半徑為,則,圓,因為,所以,所以,,則有.解得,則.【點睛】本題主要考查了幾何體的外接球,關鍵是會找到球心求出半徑,通常結合勾股定理求.屬于難題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)利用求出數列的通項公式;(2)利用累加法求數列的通項公式;【詳解】解:(1)①當時,即當時,②①減②得經檢驗時,成立故(2)()……將上述式相加可得【點睛】本題考查作差法求數列的通項公式以及累加法求數列的通項公式,屬于基礎題.18、(1)(2)【解析】
(1)由正弦定理,兩角和的正弦函數公式化簡已知等式可得,由,可求,結合范圍,可求.(2)利用三角形的面積公式可求,進而根據余弦定理可得,即可計算得解的周長的值.【詳解】解:(1)∵,∴由正弦定理可得:,即,∵,∴,∵,∴.(2)∵,,的面積為,,∴,∴由余弦定理可得:,∴解得:,∴的周長.【點睛】本題主要考查了正弦定理,兩角和的正弦函數公式,三角形的面積公式,余弦定理在解三角形中的綜合應用,考查了計算能力和轉化思想,屬于基礎題.19、(2)an=n;bn=2n﹣2(2)Tn=(n﹣2)?2n+2【解析】
(2)運用數列的遞推式,以及等比數列的通項公式可得bn,{an}是公差為的等差數列,運用等差數列的通項公式可得首項和公差,可得所求通項公式;
(2)求得,由數列的錯位相減法求和,結合等比數列的求和公式,即可得到所求和.【詳解】(2)2bn=b2(2+Sn),bn≠0,n=2時,2b2=b2(2+S2)=b2(2+b2),解得b2=2,n≥2時,2bn﹣2=2+Sn﹣2,且2bn=2+Sn,相減可得2bn﹣2bn﹣2=Sn﹣Sn﹣2=bn,即bn=2bn﹣2,可得bn=2n﹣2,設{an}是公差為d的等差數列,a2b2=4,a7+b3=2即為a2+d=2,a2+6d=7,解得a2=d=2,可得an=n;(2)cn=anbn=n?2n﹣2,前n項和,,兩式相減可得﹣Tn=2+2+4+…+2n﹣2﹣n2nn2n,化簡可得Tn=(n﹣2)2n+2.【點睛】本題考查等差數列和等比數列的通項公式和求和公式的運用,考查數列的遞推式和數列的錯位相減法求和,化簡運算能力,屬于中檔題.20、(1)見解析;(2).【解析】
(1)由題設,化簡得,即可證得數列為等比數列.(2)由(1),根據等比數列的通項公式,求得,利用等比數列的前n項和公式,即可求得數列的前n項和.【詳解】(1)由題意,數列滿足,所以又因為,所以,即,所以是以2為首項,2為公比的等比數列.(2)由(1),根據等比數列的通項公式,可得,即,所以,即.【點睛】本題主要考查了等比數列的定義,以及等比數列的通項公式及前n項和公式的應用,其中解答中熟記等比數列的定義,以及等比數列的通項公式和前n項和的公式,準確
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 安徽省宣城市2023-2024學年九年級上學期期末數學試題
- 2024年版:高端裝備制造生產線融資租賃合同
- 2024-2030年中國雙槽式清洗機項目可行性研究報告
- 2024全新年度企業(yè)師徒傳承與品牌價值提升合同3篇
- 2024年特許經營合同的特許經營范圍及權利義務
- 2024年玻璃幕墻制作安裝合同
- 2024年標準化系統安裝服務協議范本版B版
- 呂梁學院《會計學原理》2023-2024學年第一學期期末試卷
- 2024年度事業(yè)單位與境外專家勞動合同規(guī)范9篇
- 2024年桃樹果苗采購合同樣本3篇
- 三角形的高、中線與角平分線課件
- 在線教育平臺行業(yè)五年發(fā)展洞察及發(fā)展預測分析報告
- 2023年部編版道德與法治五年級下冊全冊單元復習課教案
- 2024年江蘇蘇州市事業(yè)單位專業(yè)化青年人才定崗特選444人歷年高頻500題難、易錯點模擬試題附帶答案詳解
- 學校食堂輿情處置預案
- 2024年大學生信息素養(yǎng)大賽(省賽)考試題庫(含答案)
- 應用語言學智慧樹知到答案2024年杭州師范大學
- Chinese Festivals (教學設計)-2024-2025學年外研版(一起)英語五年級上冊
- 乙方和甲方對賭協議書范本
- 2024年人教版八年級數學(上冊)期末試卷及答案(各版本)
- 安全先進個人事跡材料(7篇)
評論
0/150
提交評論