河北省邢臺(tái)市橋西區(qū)第一中學(xué)2022-2023學(xué)年高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測(cè)試題含解析_第1頁(yè)
河北省邢臺(tái)市橋西區(qū)第一中學(xué)2022-2023學(xué)年高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測(cè)試題含解析_第2頁(yè)
河北省邢臺(tái)市橋西區(qū)第一中學(xué)2022-2023學(xué)年高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測(cè)試題含解析_第3頁(yè)
河北省邢臺(tái)市橋西區(qū)第一中學(xué)2022-2023學(xué)年高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測(cè)試題含解析_第4頁(yè)
河北省邢臺(tái)市橋西區(qū)第一中學(xué)2022-2023學(xué)年高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.如圖所示,墻上掛有邊長(zhǎng)為a的正方形木板,它的四個(gè)角的空白部分都是以正方形的頂點(diǎn)為圓心,半徑為的圓弧,某人向此板投鏢,假設(shè)每次都能擊中木板,且擊中木板上每個(gè)點(diǎn)的可能性都一樣,則它擊中陰影部分的概率是()A. B. C. D.與a的值有關(guān)聯(lián)2.過點(diǎn)且與直線垂直的直線方程是.A. B. C. D.3.已知函數(shù)的最大值是2,則的值為()A. B. C. D.4.一個(gè)圓柱的底面直徑與高都等于球的直徑,設(shè)圓柱的側(cè)面積為,球的表面積為,則()A. B. C. D.15.在中,角所對(duì)的邊分別為,若,則此三角形()A.無解 B.有一解 C.有兩解 D.解的個(gè)數(shù)不確定6.已知向量,且,則().A. B.C. D.7.已知數(shù)列共有項(xiàng),滿足,且對(duì)任意、,有仍是該數(shù)列的某一項(xiàng),現(xiàn)給出下列個(gè)命題:(1);(2);(3)數(shù)列是等差數(shù)列;(4)集合中共有個(gè)元素.則其中真命題的個(gè)數(shù)是()A. B. C. D.8.式子的值為()A. B.0 C.1 D.9.設(shè)是內(nèi)任意一點(diǎn),表示的面積,記,定義,已知,是的重心,則()A.點(diǎn)在內(nèi) B.點(diǎn)在內(nèi)C.點(diǎn)在內(nèi) D.點(diǎn)與點(diǎn)重合10.若直線與圓相切,則()A. B. C. D.或二、填空題:本大題共6小題,每小題5分,共30分。11.執(zhí)行如圖所示的程序框圖,則輸出的_______.12.當(dāng)函數(shù)取得最大值時(shí),=__________.13.等比數(shù)列的首項(xiàng)為,公比為,記,則數(shù)列的最大項(xiàng)是第___________項(xiàng).14.設(shè)滿足約束條件,則的最小值為__________.15.在數(shù)列中,是其前項(xiàng)和,若,,則___________.16.在三棱錐中,,,,作交于,則與平面所成角的正弦值是________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.在銳角中,角,,所對(duì)的邊分別為,,.已知,.(1)求的值;(2)若,求的面積.18.已知,,與的夾角是(1)計(jì)算:①,②;(2)當(dāng)為何值時(shí),與垂直?19.的內(nèi)角的對(duì)邊分別為,已知.(1)求角的大??;(2)若為銳角三角形,且,求面積的取值范圍.20.已知圓,圓與圓關(guān)于直線對(duì)稱.(1)求圓的方程;(2)過直線上的點(diǎn)分別作斜率為的兩條直線,使得被圓截得的弦長(zhǎng)與被圓截得的弦長(zhǎng)相等.(i)求的坐標(biāo);(ⅱ)過任作兩條互相垂直的直線分別與兩圓相交,判斷所得弦長(zhǎng)是否恒相等,并說明理由.21.定義在上的函數(shù),如果滿足:對(duì)任意,存在常數(shù),都有成立,則稱函數(shù)是上的有界函數(shù),其中稱為函數(shù)的上界.已知函數(shù).(1)當(dāng)時(shí),求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請(qǐng)說明理由;(2)若函數(shù)在上是以3為上界的有界函數(shù),求實(shí)數(shù)的取值范圍;(3)若,函數(shù)在上的上界是,求的解析式.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】試題分析:本題考查幾何概型問題,擊中陰影部分的概率為.考點(diǎn):幾何概型,圓的面積公式.2、A【解析】

根據(jù)與已知直線垂直的直線系方程可假設(shè)直線為,代入點(diǎn)解得直線方程.【詳解】設(shè)與直線垂直的直線為:代入可得:,解得:所求直線方程為:,即本題正確選項(xiàng):【點(diǎn)睛】本題考查利用兩條直線的垂直關(guān)系求解直線方程的問題,屬于基礎(chǔ)題.3、B【解析】

根據(jù)誘導(dǎo)公式以及兩角和差的正余弦公式化簡(jiǎn),根據(jù)輔助角公式結(jié)合范圍求最值取得的條件即可得解.【詳解】由題函數(shù),最大值是2,所以,平方處理得:,所以,,所以.故選:B【點(diǎn)睛】此題考查根據(jù)三角函數(shù)的最值求參數(shù)的取值,考查對(duì)三角恒等變換的綜合應(yīng)用.4、D【解析】

由圓柱的側(cè)面積及球的表面積公式求解即可.【詳解】解:設(shè)圓柱的底面半徑為,則,則圓柱的側(cè)面積為,球的表面積為,則,故選:D.【點(diǎn)睛】本題考查了圓柱的側(cè)面積的求法,重點(diǎn)考查了球的表面積公式,屬基礎(chǔ)題.5、C【解析】

利用正弦定理求,與比較的大小,判斷B能否取相應(yīng)的銳角或鈍角.【詳解】由及正弦定理,得,,B可取銳角;當(dāng)B為鈍角時(shí),,由正弦函數(shù)在遞減,,可取.故選C.【點(diǎn)睛】本題考查正弦定理,解三角形中何時(shí)無解、一解、兩解的條件判斷,屬于中檔題.6、D【解析】

運(yùn)用平面向量的加法的幾何意義,結(jié)合等式,把其中的向量都轉(zhuǎn)化為以為起點(diǎn)的向量的形式,即可求出的表示.【詳解】,,故本題選D.【點(diǎn)睛】本題考查了平面向量加法的幾何意義,屬于基礎(chǔ)題.7、D【解析】

對(duì)任意的、,有仍是該數(shù)列的某一項(xiàng),可得出是該數(shù)列中的項(xiàng),由于,可得,即,以此類推即可判斷出結(jié)論.【詳解】對(duì)任意、,有仍是該數(shù)列的某一項(xiàng),,當(dāng)時(shí),則,必有,即,而或.若,則,而、、,舍去;若,此時(shí),,同理可得.可得數(shù)列為:、、、、.綜上可得:(1);(2);(3)數(shù)列是等差數(shù)列;(4)集合,該集合中共有個(gè)元素.因此,(1)(2)(3)(4)都正確.故選:D.【點(diǎn)睛】本題考查有關(guān)數(shù)列命題真假的判斷,涉及數(shù)列的新定義,考查推理能力與分類討論思想的應(yīng)用,屬于中等題.8、D【解析】

利用兩角和的正弦公式可得原式為cos(),再由特殊角的三角函數(shù)值可得結(jié)果.【詳解】cos()=coscos,故選D.【點(diǎn)睛】本題考查兩角和的余弦公式,熟練掌握兩角和與差的余弦公式以及特殊角的三角函數(shù)值是解題的關(guān)鍵,屬于基礎(chǔ)題.9、A【解析】解:由已知得,f(P)=(λ1,λ2,λ3)中的三個(gè)坐標(biāo)分別為P分△ABC所得三個(gè)三角形的高與△ABC的高的比值,∵f(Q)=(1/2,1/3,1/6)∴P離線段AB的距離最近,故點(diǎn)Q在△GAB內(nèi)由分析知,應(yīng)選A.10、D【解析】

本題首先可根據(jù)圓的方程確定圓心以及半徑,然后根據(jù)直線與圓相切即可列出算式并通過計(jì)算得出結(jié)果。【詳解】由題意可知,圓方程為,所以圓心坐標(biāo)為,圓的半徑,因?yàn)橹本€與圓相切,所以圓心到直線距離等于半徑,即解得或,故選D?!军c(diǎn)睛】本題考查根據(jù)直線與圓相切求參數(shù),考查根據(jù)圓的方程確定圓心與半徑,若直線與圓相切,則圓心到直線距離等于半徑,考查推理能力,是簡(jiǎn)單題。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

按照程序框圖運(yùn)行程序,直到a的值滿足a>100時(shí),輸出結(jié)果即可.【詳解】第一次循環(huán):a=3;第二次循環(huán):a=7;第三次循環(huán):a=15;第四次循環(huán):a=31;第五次循環(huán):a=63;第六次循環(huán):a=127,a>100,所以輸出a.所以本題答案為127.【點(diǎn)睛】本題考查根據(jù)程序框圖中的循環(huán)結(jié)構(gòu)計(jì)算輸出結(jié)果的問題,屬于基礎(chǔ)題.12、【解析】

利用輔助角將函數(shù)利用兩角差的正弦公式進(jìn)行化簡(jiǎn),求得函數(shù)取得最大值時(shí)的與的關(guān)系,從而求得,,可得結(jié)果.【詳解】因?yàn)楹瘮?shù),其中,,當(dāng)時(shí),函數(shù)取得最大值,此時(shí),∴,,∴故答案為【點(diǎn)睛】本題考查了兩角差的正弦公式的逆用,著重考查輔助角公式的應(yīng)用與正弦函數(shù)的性質(zhì),屬于中檔題.13、【解析】

求得,則可將問題轉(zhuǎn)化為求使得最大且使得為偶數(shù)的正整數(shù)的值,利用二次函數(shù)的基本性質(zhì)求解即可.【詳解】由等比數(shù)列的通項(xiàng)公式可得,,則問題轉(zhuǎn)化為求使得最大且使得為偶數(shù)的正整數(shù)的值,,當(dāng)時(shí),取得最大值,此時(shí)為偶數(shù).因此,的最大項(xiàng)是第項(xiàng).故答案為:.【點(diǎn)睛】本題考查等比數(shù)列前項(xiàng)積最值的計(jì)算,將問題進(jìn)行轉(zhuǎn)化是解題的關(guān)鍵,考查分析問題和解決問題的能力,屬于中等題.14、-1【解析】

由約束條件作出可行域,由圖得到最優(yōu)解,求出最優(yōu)解的坐標(biāo),數(shù)形結(jié)合得答案.【詳解】由x,y滿足約束條件作出可行域如圖,由圖可知,目標(biāo)函數(shù)的最優(yōu)解為A,聯(lián)立,解得A(﹣1,1).∴z=3x﹣2y的最小值為﹣3×1﹣2×1=﹣1.故答案為:﹣1.【點(diǎn)睛】本題考查了簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.15、【解析】

令,可求出的值,令,由可求出的表達(dá)式,再檢驗(yàn)是否符合時(shí)的表達(dá)式,由此可得出數(shù)列的通項(xiàng)公式.【詳解】當(dāng)時(shí),;當(dāng)時(shí),.不適合上式,因此,.故答案為:.【點(diǎn)睛】本題考查利用求數(shù)列的通項(xiàng)公式,一般利用,求解時(shí)還應(yīng)對(duì)是否滿足的表達(dá)式進(jìn)行驗(yàn)證,考查運(yùn)算求解能力,屬于中等題.16、【解析】

取中點(diǎn),中點(diǎn),易得面,再求出到平面的距離,進(jìn)而求解再得出到平面的距離.從而算得與平面所成角的正弦值即可.【詳解】如圖,取中點(diǎn),中點(diǎn),連接.因?yàn)?,所以.因?yàn)?,所以.在中,余弦定理可得.在中,余弦定理可得,故.在中,,且面.故到面的距離.到面的距離.又因?yàn)?所以,所以,所以,故到面的距離.故與平面所成角的正弦值是故答案為:【點(diǎn)睛】本題主要考查了空間中線面垂直的性質(zhì)與運(yùn)用,同時(shí)也考查了余弦定理在三角形中求線段與角度正余弦值的方法,需要根據(jù)題意找到點(diǎn)到面的距離求解,再求出線面的夾角.屬于難題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)2;(2)3.【解析】

(1)利用正弦定理可得,消元后可得關(guān)于的三角方程,從該方程可得的值.(2)利用同角的三角函數(shù)的基本關(guān)系式結(jié)合(1)中的結(jié)果可得,再根據(jù)題設(shè)條件得到后再利用正弦定理可求的值,從而得到所求的面積.【詳解】(1)在由正弦定理得,①,因?yàn)?所以,又因?yàn)椋?,整理得到,?(2)在銳角中,因?yàn)?,所以,將代入①?在由正弦定理得,所以.【點(diǎn)睛】在解三角形中,如果題設(shè)條件是邊角的混合關(guān)系,那么我們可以利用正弦定理或余弦定理把這種混合關(guān)系式轉(zhuǎn)化為邊的關(guān)系式或角的關(guān)系式.另外,三角形中共有七個(gè)幾何量(三邊三角以及外接圓的半徑),一般地,知道兩角及一邊,用正弦定理.另外,如果知道兩個(gè)角的三角函數(shù)值,則必定可以求第三角的三角函數(shù)值,此時(shí)涉及到的公式有同角的三角函數(shù)的基本關(guān)系式和兩角和差的三角公式、倍角公式等.18、(1)①;②;(2).【解析】

利用數(shù)量積的定義求解出的值;(1)將所求模長(zhǎng)平方,從而得到關(guān)于模長(zhǎng)和數(shù)量積的式子,代入求得模長(zhǎng)的平方,再開平方得到結(jié)果;(2)向量互相垂直得到數(shù)量積等于零,由此建立方程,解方程求得結(jié)果.【詳解】由已知得:(1)①②(2)若與垂直,則即:,解得:【點(diǎn)睛】本題考查利用數(shù)量積求解向量的模長(zhǎng)、利用數(shù)量積與向量垂直的關(guān)系求解參數(shù)的問題.求解向量的模長(zhǎng)關(guān)鍵是能夠通過平方運(yùn)算將問題轉(zhuǎn)化為模長(zhǎng)和數(shù)量積運(yùn)算的形式,從而使問題得以求解.19、(1)(2)【解析】

(1)利用正弦定理邊角互化的思想以及兩角和的正弦公式、三角形的內(nèi)角和定理以及誘導(dǎo)公式求出的值,結(jié)合角的范圍求出角的值;(2)由三角形的面積公式得,由正弦定理結(jié)合內(nèi)角和定理得出,利用為銳角三角形得出的取值范圍,可求出的范圍,進(jìn)而求出面積的取值范圍.【詳解】(1),由正弦定理邊角互化思想得,所以,,,,,;(2)由題設(shè)及(1)知的面積.由正弦定理得.由于為銳角三角形,故,由(1)知,所以,故,從而.因此面積的取值范圍是.【點(diǎn)睛】本題考查正弦定理解三角形以及三角形面積的取值范圍的求解,在解三角形中,等式中含有邊有角,且邊的次數(shù)相等時(shí),可以利用邊角互化的思想求解,一般優(yōu)先是邊化為角的正弦值,求解三角形中的取值范圍問題時(shí),利用正弦定理結(jié)合三角函數(shù)思想進(jìn)行求解,考查計(jì)算能力,屬于中等題.20、(1);(2)(i),(ii)見解析【解析】

(1)根據(jù)題意,將問題轉(zhuǎn)化為關(guān)于直線的對(duì)稱點(diǎn)即可得到,半徑不變,從而得到方程;(2)(i)設(shè),由于弦長(zhǎng)和距離都相等,故P到兩直線的距離也相等,利用點(diǎn)到線距離公式即可得到答案;(ⅱ)分別討論斜率不存在和為0三種情況分別計(jì)算對(duì)應(yīng)弦長(zhǎng),故可判斷.【詳解】(1)設(shè),因?yàn)閳A與圓關(guān)于直線對(duì)稱,,則直線與直線垂直,中點(diǎn)在直線上,得解得所以圓.(2)(i)設(shè)的方程為,即;的方程為,即.因?yàn)楸粓A截得的弦長(zhǎng)與被圓截得的弦長(zhǎng)相等,且兩圓半徑相等,所以到的距離與到的距離相等,即,所以或.由題意,到直線的距離,所以不滿足題意,舍去,故,點(diǎn)坐標(biāo)為.(ii)過點(diǎn)任作互相垂直的兩條直線分別與兩圓相交,所得弦長(zhǎng)恒相等.證明如下:當(dāng)?shù)男甭实扔?時(shí),的斜率不存在,被圓截得的弦長(zhǎng)與被圓截得的弦長(zhǎng)都等于圓的半徑;當(dāng)?shù)男甭什淮嬖?,的斜率等?時(shí),與圓不相交,與圓不相交.當(dāng)、的斜率存在且都不等于0,兩條直線分別與兩圓相交時(shí),設(shè)、的方程分別為,即.因?yàn)榈降木嚯x,到的距離,所以到的距離與到的距離相等.所以圓與圓的半徑相等,所以被圓截得的弦長(zhǎng)與被圓截得的弦長(zhǎng)恒相等.綜上所述,過點(diǎn)任作互相垂直的兩條直線分別與兩圓相交,所得弦長(zhǎng)恒相等.【點(diǎn)睛】本題主要考查點(diǎn)的對(duì)稱問題,直線與圓的位置關(guān)系,計(jì)算量較大,意在考查學(xué)生的轉(zhuǎn)化能力,計(jì)算能力,難度中等.21、(1)見解析;(2);(3).【解析】

(1)通過判斷函數(shù)的單調(diào)性,求出的值域,進(jìn)而可判斷

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論