![浙江省溫州市第11中學(xué)高三數(shù)學(xué)理知識點(diǎn)試題含解析_第1頁](http://file4.renrendoc.com/view/6b81461661379a1a6f403d245cea17bc/6b81461661379a1a6f403d245cea17bc1.gif)
![浙江省溫州市第11中學(xué)高三數(shù)學(xué)理知識點(diǎn)試題含解析_第2頁](http://file4.renrendoc.com/view/6b81461661379a1a6f403d245cea17bc/6b81461661379a1a6f403d245cea17bc2.gif)
![浙江省溫州市第11中學(xué)高三數(shù)學(xué)理知識點(diǎn)試題含解析_第3頁](http://file4.renrendoc.com/view/6b81461661379a1a6f403d245cea17bc/6b81461661379a1a6f403d245cea17bc3.gif)
![浙江省溫州市第11中學(xué)高三數(shù)學(xué)理知識點(diǎn)試題含解析_第4頁](http://file4.renrendoc.com/view/6b81461661379a1a6f403d245cea17bc/6b81461661379a1a6f403d245cea17bc4.gif)
![浙江省溫州市第11中學(xué)高三數(shù)學(xué)理知識點(diǎn)試題含解析_第5頁](http://file4.renrendoc.com/view/6b81461661379a1a6f403d245cea17bc/6b81461661379a1a6f403d245cea17bc5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
浙江省溫州市第11中學(xué)高三數(shù)學(xué)理知識點(diǎn)試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.函數(shù)的圖象大致是(
)
參考答案:C略2.已知雙曲線的一條漸近線過點(diǎn),則雙曲線的離心率為(
)A.
B.2
C.
D.5參考答案:C3.設(shè)a,b是兩個(gè)非零向量。A.若|a+b|=|a|-|b|,則a⊥bB.若a⊥b,則|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,則存在實(shí)數(shù)λ,使得b=λaD.若存在實(shí)數(shù)λ,使得b=λa,則|a+b|=|a|-|b|
參考答案:C
利用排除法可得選項(xiàng)C是正確的,∵|a+b|=|a|-|b|,則a,b共線,即存在實(shí)數(shù)λ,使得a=λb.如選項(xiàng)A:|a+b|=|a|-|b|時(shí),a,b可為異向的共線向量;選項(xiàng)B:若a⊥b,由正方形得|a+b|=|a|-|b|不成立;選項(xiàng)D:若存在實(shí)數(shù)λ,使得a=λb,a,b可為同向的共線向量,此時(shí)顯然|a+b|=|a|-|b|不成立.
4.已知f(x)=ax2+bx,其中﹣1≤a<0,b>0,則“存在x∈[0,1],|f(x)|>1”是“a+b>1”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件參考答案:C【考點(diǎn)】必要條件、充分條件與充要條件的判斷.【分析】f(x)=ax2+bx,可得a+b>1?f(1)>1.由存在x∈[0,1],|f(x)|>1,可得|f(x)|max>1.由﹣1≤a<0,b>0,可得函數(shù)f(x)的對稱軸x=﹣>0.計(jì)算:f(0)=0,f(1)=a+b,=>0.即可判斷出結(jié)論.【解答】解:∵f(x)=ax2+bx,∴a+b>1?f(1)>1.∵存在x∈[0,1],|f(x)|>1,∴|f(x)|max>1.∵﹣1≤a<0,b>0,∴函數(shù)f(x)的對稱軸x=﹣>0.計(jì)算:f(0)=0,f(1)=a+b,=>0.f(1)>1,∴b>1﹣a,則=>>1,反之也成立,若b2>﹣4a,則b>﹣4a>1﹣a.∴“存在x∈[0,1],|f(x)|>1”是“a+b>1”的充要條件.故選:C.【點(diǎn)評】本題考查了二次函數(shù)的圖象與性質(zhì)、不等式的解法、簡易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于難題.5.如圖曲線和直線所圍成的圖形(陰影部分)的面積為(
)A.
B.
C.
D.參考答案:D令,所以面積為.
6.i為虛數(shù)單位,復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)到原點(diǎn)的距離為()A. B. C. D.1參考答案:C【考點(diǎn)】復(fù)數(shù)的代數(shù)表示法及其幾何意義.【分析】由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡復(fù)數(shù),求出在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo),則答案可求.【解答】解:=,復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo)為:(﹣1,1),到原點(diǎn)的距離為:.故選:C.7.下列結(jié)論錯(cuò)誤的是()A.命題“若p,則q”與命題“若?q,則?p”互為逆否命題B.命題p:,命題q:,則p∨q為真C.若,則的逆命題為真命題D.若p∨q為假命題,則p、q均為假命題參考答案:C略8.二項(xiàng)式的展開式中的系數(shù)是-7,則a=A.1 B. C. D.-1參考答案:B9.已知復(fù)數(shù)的實(shí)部是,虛部是,則(其中為虛數(shù)單位)在復(fù)平面對應(yīng)的點(diǎn)在(
)A.第一象限
B.第二象限
C.第三象限
D.第四象限參考答案:C10.設(shè)雙曲線的半焦距為c,離心率為.若直線與雙曲線的一個(gè)交點(diǎn)的橫坐標(biāo)恰為c,則k等于
(
)
A.
B.
C.
D.參考答案:答案:C二、填空題:本大題共7小題,每小題4分,共28分11.已知函數(shù)是定義在實(shí)數(shù)集R上的不恒為零的偶函數(shù),且對任意實(shí)數(shù)都有
,則的值是
參考答案:012.定義在R上的函數(shù)f(x)滿足f(x+2)=f(x),且在區(qū)間[﹣1,1)上,f(x)=,其中m∈R,若,則f(5m)=.參考答案:【考點(diǎn)】分段函數(shù)的應(yīng)用.【分析】求出函數(shù)的周期,利用等式關(guān)系求出m,然后求解函數(shù)值.【解答】解:因?yàn)閒(x+2)=f(x)?T=2.所以,f(5m)=f(﹣3)=f(﹣1)=﹣1+=﹣.故答案為:.13.已知,則________________.參考答案:14.如圖,已知正方形的邊長為3,為的中點(diǎn),與交于點(diǎn),則
___________.參考答案:略15.已知等比數(shù)列為遞增數(shù)列,且,,則___;參考答案:2
16.連續(xù)擲兩次骰子,以先后得到的點(diǎn)數(shù)m、n為點(diǎn)P(m,n)的坐標(biāo),那么點(diǎn)P在圓x2+y2=17外部的概率應(yīng)為__.參考答案:略17.若雙曲線的離心率為,則其漸近線方程為(
)(A)
(B)
(C)
(D)參考答案:B三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.(12分)寫出計(jì)算1+2+3+…+100的值的算法語句.(要求用循環(huán)結(jié)構(gòu))參考答案:用UNTIL語句編寫計(jì)算1+2+3+……100的程序:
i=1
S=0
DO
S=S+i
i=i+1
LOOPUNTILi>100
PRINTS
END
19.已知點(diǎn)為雙曲線的左、右焦點(diǎn),過作垂直于軸的直線,在軸上方交雙曲線于點(diǎn),且,圓的方程是.(1)求雙曲線的方程;(2)過雙曲線上任意一點(diǎn)作該雙曲線兩條漸近線的垂線,垂足分別為,求的值;(3)過圓上任意一點(diǎn)作圓的切線交雙曲線于兩點(diǎn),中點(diǎn)為,求證:.參考答案:(1)設(shè)的坐標(biāo)分別為,因?yàn)辄c(diǎn)在雙曲線上,所以,即,所以在中,,,所以由雙曲線的定義可知:故雙曲線的方程為:(2)由條件可知:兩條漸近線分別為;設(shè)雙曲線上的點(diǎn),設(shè)兩漸近線的夾角為,則點(diǎn)到兩條漸近線的距離分別為,因?yàn)樵陔p曲線上,所以又所以(3)由題意,即證:,設(shè),切線的方程為:①當(dāng)時(shí),切線的方程代入雙曲線中,化簡得:(所以,又所以②當(dāng)時(shí),易知上述結(jié)論也成立.所以綜上,,所以20.(本小題滿分10分)選修4-1:幾何證明選講如圖,四邊形是⊙的內(nèi)接四邊形,延長和相交于點(diǎn),,.(Ⅰ)求的值;(Ⅱ)若為⊙的直徑,且,求的長.參考答案:(Ⅰ)由,,得與相似,設(shè)則有,所以
………………5分(Ⅱ),………………10分21.直角三角形中,是的中點(diǎn),是線段上一個(gè)動(dòng)點(diǎn),且,如圖所示,沿將翻折至,使得平面平面.(1)當(dāng)時(shí),證明:平面;(2)是否存在,使得與平面所成的角的正弦值是?若存在,求出的值;若不存在,請說明理由.參考答案:證明:(1)在中,,即,則,取的中點(diǎn),連接交于,當(dāng)時(shí),是的中點(diǎn),而是的中點(diǎn),所以是的中位線,所以,在中,是的中點(diǎn),所以是的中點(diǎn),在中,,所以,則,又平面平面,平面平面,所以平面,又平面,所以.而,所以平面;(2)以為原點(diǎn),所在的直線為軸,所在的直線為軸,建立如圖所示空間直角坐標(biāo)系,則,由(1)知是的中點(diǎn),,又平面平面,所以平面,則,假設(shè)存在滿足題意的,則由,可得,則,設(shè)平面的一個(gè)法向量為,則即,令,可得,即,所以與平面所成的角的正弦值,解得或3(舍去),綜上,存在,使得與平面所成的角的正弦值為.22.設(shè)數(shù)列{an}滿足:a1=a,an+1=(a>0且a≠1,n∈N*).(1)證明:當(dāng)n≥2時(shí),an<an+1<1;(2)若b∈(a2,1),求證:當(dāng)整數(shù)k≥+1時(shí),ak+1>b.參考答案:【考點(diǎn)】數(shù)列遞推式.【分析】(1)先判斷an>0,再由基本不等式得到an+1≤1,再利用數(shù)學(xué)歸納法證明:(2)分若ak≥b,由(1)知ak+1>ak≥b,若ak<b,根據(jù)0<x<1以及二項(xiàng)式定理可(1+x)n≥nx,根據(jù)迭代法和放縮法可證明ak+1>a2?[1+(k﹣1)],再由條件可得1+(k﹣1)≥+1=,問題得以證明【解答】證明:(1)由an+1=知an與a1的符號相同,而a1=a>0,∴an>0,∴an+1=≤1,當(dāng)且僅當(dāng)an=1時(shí),an+1=1下面用數(shù)學(xué)歸納法證明:①∵a>0且a≠1,∴a2<1,∴=>1,即有a2<a3<1,②假設(shè)n=k時(shí),有ak<ak+1<1,則ak+2==<1且=>1,即ak+1<ak+2<1即當(dāng)n=k+1時(shí)不等式成立,由①②可得當(dāng)n≥2時(shí),an<an+1<1;(2)若ak≥b,由(1)知ak+1>ak≥b,若ak<b,∵0<x<1以及二項(xiàng)式定理可知(1+x)n=1+Cn1x+…+Cnnxn≥nx,而a
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 五年級數(shù)學(xué)下冊蘇教版第一單元第10課《列方程解決實(shí)際問題練習(xí)(練習(xí)三)》聽評課記錄
- 中考道德與法治一輪復(fù)習(xí)八年級上第2單元遵守社會(huì)規(guī)則 聽課評課記錄 人教版
- 湘教版數(shù)學(xué)八年級上冊《小結(jié)練習(xí)》聽評課記錄6
- 公派出國留學(xué)協(xié)議書范本
- 電商平臺加盟合作協(xié)議書范本
- 軟件合作開發(fā)合同范本
- 二零二五年度資質(zhì)借用與金融服務(wù)合作協(xié)議:金融機(jī)構(gòu)資質(zhì)借用合同
- 天津市建設(shè)工程施工專業(yè)分包合同范本
- 2025年度餐廚廢棄物收購與冷鏈物流配送服務(wù)合同
- 洗車場場地租賃合同范本
- 2025高考數(shù)學(xué)專項(xiàng)復(fù)習(xí):概率與統(tǒng)計(jì)的綜合應(yīng)用(十八大題型)含答案
- 2024-2030年中國紫蘇市場深度局勢分析及未來5發(fā)展趨勢報(bào)告
- 銷售人員課件教學(xué)課件
- LED大屏技術(shù)方案(適用于簡單的項(xiàng)目)
- Lesson 6 What colour is it(教學(xué)設(shè)計(jì))-2023-2024學(xué)年接力版英語三年級下冊
- 歷年國家二級(Python)機(jī)試真題匯編(含答案)
- GB/T 4706.10-2024家用和類似用途電器的安全第10部分:按摩器具的特殊要求
- NB/T 11446-2023煤礦連采連充技術(shù)要求
- 2024年江蘇省蘇州市中考英語試題卷(含標(biāo)準(zhǔn)答案及解析)
- 第五單元任務(wù)二《準(zhǔn)備與排練》教學(xué)設(shè)計(jì) 統(tǒng)編版語文九年級下冊
- 設(shè)計(jì)質(zhì)量、進(jìn)度、服務(wù)保證措施
評論
0/150
提交評論