2011-2020年高考數(shù)學(xué)真題分類匯編 專題19 數(shù)列的求和問(wèn)題(含解析)_第1頁(yè)
2011-2020年高考數(shù)學(xué)真題分類匯編 專題19 數(shù)列的求和問(wèn)題(含解析)_第2頁(yè)
2011-2020年高考數(shù)學(xué)真題分類匯編 專題19 數(shù)列的求和問(wèn)題(含解析)_第3頁(yè)
2011-2020年高考數(shù)學(xué)真題分類匯編 專題19 數(shù)列的求和問(wèn)題(含解析)_第4頁(yè)
2011-2020年高考數(shù)學(xué)真題分類匯編 專題19 數(shù)列的求和問(wèn)題(含解析)_第5頁(yè)
已閱讀5頁(yè),還剩34頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題19數(shù)列的求和問(wèn)題十年大數(shù)據(jù)*全景展示年份題號(hào)考點(diǎn)考查內(nèi)容2011理17拆項(xiàng)消去求和法等比數(shù)列的通項(xiàng)公式、性質(zhì)、等差數(shù)列的前SKIPIF1<0項(xiàng)和公式及拆項(xiàng)相消求和法,運(yùn)算求解能力2012理16公式法與分組求和法靈活運(yùn)用數(shù)列知識(shí)求數(shù)列問(wèn)題能力2013卷2理16數(shù)列綜合問(wèn)題等差數(shù)列的前SKIPIF1<0項(xiàng)和公式及數(shù)列最值問(wèn)題,函數(shù)與方程思想卷1文17拆項(xiàng)消去求和法等差數(shù)列的通項(xiàng)公式、前SKIPIF1<0項(xiàng)和公式及列項(xiàng)求和法,方程思想卷1理12數(shù)列綜合問(wèn)題遞推數(shù)列、數(shù)列單調(diào)性、余弦定理、基本不等式應(yīng)用等基礎(chǔ)知識(shí),綜合利用數(shù)學(xué)知識(shí)分析解決問(wèn)題能力2014卷1文17錯(cuò)位相減法等差數(shù)列的通項(xiàng)公式及錯(cuò)位相減法,方程思想、轉(zhuǎn)化與化歸思想2015卷1理17拆項(xiàng)消去求和法利用數(shù)列利用前SKIPIF1<0項(xiàng)和SKIPIF1<0與SKIPIF1<0關(guān)系求通項(xiàng)公式、等差數(shù)列定義及通項(xiàng)公式、利用拆項(xiàng)消去法數(shù)列求和2016卷3理12數(shù)列綜合問(wèn)題對(duì)新概念的理解和應(yīng)用新定義列出滿足條件的數(shù)列卷1理17公式法與分組求和法等差數(shù)列通項(xiàng)公式與前SKIPIF1<0項(xiàng)和公式、對(duì)新概念的理解與應(yīng)用,分組求和法2017卷3文17拆項(xiàng)消去求和法利用數(shù)列利用前SKIPIF1<0項(xiàng)和SKIPIF1<0與SKIPIF1<0關(guān)系求通項(xiàng)公式及利用拆項(xiàng)消去法數(shù)列求和卷2理15拆項(xiàng)消去求和法等差數(shù)列基本量的運(yùn)算等差數(shù)列通項(xiàng)公式、前SKIPIF1<0項(xiàng)和公式及拆項(xiàng)消去求和法,方程思想卷1理12數(shù)列綜合問(wèn)題等比數(shù)列的前SKIPIF1<0項(xiàng)和公式、等差數(shù)列前SKIPIF1<0項(xiàng)和公式,邏輯推理能力2020卷2文12等差數(shù)列等差數(shù)列通項(xiàng)公式、前SKIPIF1<0項(xiàng)和公式卷3理17數(shù)列綜合問(wèn)題數(shù)學(xué)歸納法,錯(cuò)位相減法求數(shù)列的和文17等差數(shù)列與等比數(shù)列等比數(shù)列通項(xiàng)公式,等差數(shù)列前SKIPIF1<0項(xiàng)和公式大數(shù)據(jù)分析*預(yù)測(cè)高考考點(diǎn)出現(xiàn)頻率2021年預(yù)測(cè)考點(diǎn)61公式法與分組求和法1/132021年高考數(shù)列求和部分仍將重點(diǎn)拆線消去法和錯(cuò)位相減法及與不等式恒成立等相關(guān)的數(shù)列綜合問(wèn)題,求和問(wèn)題多為解答題第二問(wèn),難度為中檔,數(shù)列綜合問(wèn)題為小題壓軸題,為難題考點(diǎn)62裂項(xiàng)相消法求和5/13考點(diǎn)63錯(cuò)位相減法2/13考點(diǎn)64并項(xiàng)法與倒序求和法1/13考點(diǎn)65數(shù)列綜合問(wèn)題4/13十年試題分類*探求規(guī)律考點(diǎn)61公式法與分組求和法1.(2020全國(guó)Ⅱ文14)記SKIPIF1<0為等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,若SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【思路導(dǎo)引】∵SKIPIF1<0是等差數(shù)列,根據(jù)已知條件SKIPIF1<0,求出公差,根據(jù)等差數(shù)列前SKIPIF1<0項(xiàng)和,即可求得答案.【解析】SKIPIF1<0SKIPIF1<0是等差數(shù)列,且SKIPIF1<0.設(shè)SKIPIF1<0等差數(shù)列的公差SKIPIF1<0,根據(jù)等差數(shù)列通項(xiàng)公式:SKIPIF1<0,可得SKIPIF1<0,即:SKIPIF1<0,整理可得:SKIPIF1<0,解得:SKIPIF1<0.SKIPIF1<0根據(jù)等差數(shù)列前SKIPIF1<0項(xiàng)和公式:SKIPIF1<0,可得:SKIPIF1<0,SKIPIF1<0SKIPIF1<0.故答案為:SKIPIF1<0.2.(2020浙江11)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0.【答案】10【思路導(dǎo)引】根據(jù)通項(xiàng)公式可求出數(shù)列SKIPIF1<0的前三項(xiàng),即可求出.【解析】由題意可知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故答案為:10.3.(2020山東14)將數(shù)列SKIPIF1<0與SKIPIF1<0的公共項(xiàng)從小到大排列得到數(shù)列SKIPIF1<0,則SKIPIF1<0的前SKIPIF1<0項(xiàng)和為.【答案】SKIPIF1<0【思路導(dǎo)引】首先判斷出數(shù)列SKIPIF1<0與SKIPIF1<0項(xiàng)的特征,從而判斷出兩個(gè)數(shù)列公共項(xiàng)所構(gòu)成新數(shù)列的首項(xiàng)以及公差,利用等差數(shù)列的求和公式求得結(jié)果.【解析】因?yàn)閿?shù)列SKIPIF1<0是以1為首項(xiàng),以2為公差的等差數(shù)列,數(shù)列SKIPIF1<0是以1首項(xiàng),以3為公差的等差數(shù)列,所以這兩個(gè)數(shù)列的公共項(xiàng)所構(gòu)成的新數(shù)列SKIPIF1<0是以1為首項(xiàng),以6為公差的等差數(shù)列,所以SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,故答案為:SKIPIF1<0.4.(2012新課標(biāo),理16)數(shù)列{SKIPIF1<0}滿足SKIPIF1<0,則{SKIPIF1<0}的前60項(xiàng)和為.【答案】1830【解析】由題設(shè)知,SKIPIF1<0=1,①SKIPIF1<0=3②SKIPIF1<0=5③SKIPIF1<0=7,SKIPIF1<0=9,SKIPIF1<0=11,SKIPIF1<0=13,SKIPIF1<0=15,SKIPIF1<0=17,SKIPIF1<0=19,SKIPIF1<0,……,∴②-①得SKIPIF1<0=2,③+②得SKIPIF1<0=8,同理可得SKIPIF1<0=2,SKIPIF1<0=24,SKIPIF1<0=2,SKIPIF1<0=40,…,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…,是各項(xiàng)均為2的常數(shù)列,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…是首項(xiàng)為8,公差為16的等差數(shù)列,∴{SKIPIF1<0}的前60項(xiàng)和為SKIPIF1<0=1830.5.(2020山東18)已知公比大于SKIPIF1<0的等比數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的通項(xiàng)公式;(2)記SKIPIF1<0為SKIPIF1<0在區(qū)間SKIPIF1<0SKIPIF1<0中的項(xiàng)的個(gè)數(shù),求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【思路導(dǎo)引】(1)利用基本元的思想,將已知條件轉(zhuǎn)化為SKIPIF1<0的形式,求解出SKIPIF1<0,由此求得數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)通過(guò)分析數(shù)列SKIPIF1<0的規(guī)律,由此求得數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【解析】(1)由于數(shù)列SKIPIF1<0是公比大于SKIPIF1<0的等比數(shù)列,設(shè)首項(xiàng)為SKIPIF1<0,公比為SKIPIF1<0,依題意有SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,所以數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0.(2)由于SKIPIF1<0,所以SKIPIF1<0對(duì)應(yīng)的區(qū)間為:SKIPIF1<0,則SKIPIF1<0;SKIPIF1<0對(duì)應(yīng)的區(qū)間分別為:SKIPIF1<0,則SKIPIF1<0,即有SKIPIF1<0個(gè)SKIPIF1<0;SKIPIF1<0對(duì)應(yīng)的區(qū)間分別為:SKIPIF1<0,則SKIPIF1<0,即有SKIPIF1<0個(gè)SKIPIF1<0;SKIPIF1<0對(duì)應(yīng)的區(qū)間分別為:SKIPIF1<0,則SKIPIF1<0,即有SKIPIF1<0個(gè)SKIPIF1<0;SKIPIF1<0對(duì)應(yīng)的區(qū)間分別為:SKIPIF1<0,則SKIPIF1<0,即有SKIPIF1<0個(gè)SKIPIF1<0;SKIPIF1<0對(duì)應(yīng)的區(qū)間分別為:SKIPIF1<0,則SKIPIF1<0,即有SKIPIF1<0個(gè)SKIPIF1<0;SKIPIF1<0對(duì)應(yīng)的區(qū)間分別為:SKIPIF1<0,則SKIPIF1<0,即有SKIPIF1<0個(gè)SKIPIF1<0.所以SKIPIF1<0.6.(2016?新課標(biāo)Ⅱ,理17)SKIPIF1<0為等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,且SKIPIF1<0,SKIPIF1<0,記SKIPIF1<0,其中SKIPIF1<0表示不超過(guò)SKIPIF1<0的最大整數(shù),如SKIPIF1<0,SKIPIF1<0.(Ⅰ)求SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(Ⅱ)求數(shù)列SKIPIF1<0的前1000項(xiàng)和.【解析】(Ⅰ)SKIPIF1<0為等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.可得SKIPIF1<0,則公差SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(Ⅱ)由(Ⅰ)可知:SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0.?dāng)?shù)列SKIPIF1<0的前1000項(xiàng)和為:SKIPIF1<0.7.(2015湖南)設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,已知SKIPIF1<0,且SKIPIF1<0SKIPIF1<0.(Ⅰ)證明:SKIPIF1<0;(Ⅱ)求SKIPIF1<0.【解析】(Ⅰ)由條件,對(duì)任意,有SKIPIF1<0SKIPIF1<0,因而對(duì)任意,有SKIPIF1<0SKIPIF1<0,兩式相減,得,即,又,所以,故對(duì)一切,.(Ⅱ)由(Ⅰ)知,,所以,于是數(shù)列是首項(xiàng),公比為3的等比數(shù)列,數(shù)列是首項(xiàng),公比為3的等比數(shù)列,所以,于是.從而,綜上所述,8.(2013安徽)設(shè)數(shù)列滿足,,且對(duì)任意,函數(shù),滿足(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)若,求數(shù)列的前項(xiàng)和.【解析】(Ⅰ)由,SKIPIF1<0SKIPIF1<0所以,∴SKIPIF1<0是等差數(shù)列.而,,,,(Ⅱ)考點(diǎn)62裂項(xiàng)相消法求和1.(2020浙江20)已知數(shù)列{an},{bn},{cn}中,SKIPIF1<0.(Ⅰ)若數(shù)列{bn}為等比數(shù)列,且公比SKIPIF1<0,且SKIPIF1<0,求q與an的通項(xiàng)公式;(Ⅱ)若數(shù)列{bn}為等差數(shù)列,且公差SKIPIF1<0,證明:SKIPIF1<0.【答案】(I)SKIPIF1<0;(II)證明見(jiàn)解析【思路導(dǎo)引】(I)根據(jù)SKIPIF1<0,求得SKIPIF1<0,進(jìn)而求得數(shù)列SKIPIF1<0的通項(xiàng)公式,利用累加法求得數(shù)列SKIPIF1<0的通項(xiàng)公式.(II)利用累乘法求得數(shù)列SKIPIF1<0的表達(dá)式,結(jié)合裂項(xiàng)求和法證得不等式成立.【解析】(I)依題意SKIPIF1<0,而SKIPIF1<0,即SKIPIF1<0,由于SKIPIF1<0,∴解得SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0,故SKIPIF1<0,∴數(shù)列SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列,∴SKIPIF1<0.∴SKIPIF1<0.∴SKIPIF1<0,故SKIPIF1<0(SKIPIF1<0).∴SKIPIF1<0SKIPIF1<0SKIPIF1<0.(II)依題意設(shè)SKIPIF1<0,由于SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,故SKIPIF1<0SKIPIF1<0SKIPIF1<0.∴SKIPIF1<0SKIPIF1<0.由于SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0.2.(2017?新課標(biāo)Ⅱ,理15)等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【解析】等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,數(shù)列的首項(xiàng)為1,公差為1,∴SKIPIF1<0,∴SKIPIF1<0,則SKIPIF1<0.3.(2017?新課標(biāo)Ⅲ,文17)設(shè)數(shù)列SKIPIF1<0滿足SKIPIF1<0.(1)求SKIPIF1<0的通項(xiàng)公式;(2)求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和.【解析】(1)數(shù)列SKIPIF1<0滿足SKIPIF1<0.SKIPIF1<0時(shí),SKIPIF1<0.SKIPIF1<0.SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,上式也成立.SKIPIF1<0.(2)SKIPIF1<0.SKIPIF1<0數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.4.(2015新課標(biāo)Ⅰ,理17)SKIPIF1<0為數(shù)列{SKIPIF1<0}的前n項(xiàng)和.已知SKIPIF1<0>0,SKIPIF1<0=QUOTESKIPIF1<0.(Ⅰ)求{SKIPIF1<0}的通項(xiàng)公式:(Ⅱ)設(shè),求數(shù)列}的前n項(xiàng)和【解析】(Ⅰ)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0=3,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0=2,所以數(shù)列{SKIPIF1<0}是首項(xiàng)為3,公差為2的等差數(shù)列,所以SKIPIF1<0=SKIPIF1<0;(Ⅱ)由(Ⅰ)知,SKIPIF1<0=SKIPIF1<0,所以數(shù)列{SKIPIF1<0}前n項(xiàng)和為SKIPIF1<0=SKIPIF1<0=SKIPIF1<0.5.(2013新課標(biāo)Ⅰ,文17)已知等差數(shù)列{SKIPIF1<0}的前n項(xiàng)和SKIPIF1<0滿足SKIPIF1<0=0,SKIPIF1<0=-5.(Ⅰ)求{SKIPIF1<0}的通項(xiàng)公式;(Ⅱ)求數(shù)列{SKIPIF1<0}的前n項(xiàng)和.【解析】(Ⅰ)由SKIPIF1<0=0,SKIPIF1<0=-5得,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0=1,SKIPIF1<0=-1,∴SKIPIF1<0=SKIPIF1<0;(Ⅱ)由已知SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,∴數(shù)列{SKIPIF1<0}的前n項(xiàng)和為SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0.6.(2011新課標(biāo),理17)等比數(shù)列{SKIPIF1<0}的各項(xiàng)均為整數(shù),且SKIPIF1<0=1,SKIPIF1<0=SKIPIF1<0,(Ⅰ)求數(shù)列{SKIPIF1<0}的通項(xiàng)公式;(Ⅱ)設(shè)SKIPIF1<0=SKIPIF1<0,求數(shù)列{SKIPIF1<0}的前SKIPIF1<0項(xiàng)和.【解析】(Ⅰ)設(shè)數(shù)列{SKIPIF1<0}的公比為SKIPIF1<0,由SKIPIF1<0=SKIPIF1<0得SKIPIF1<0=SKIPIF1<0,所以SKIPIF1<0=SKIPIF1<0,由條件可知SKIPIF1<0>0,故SKIPIF1<0=SKIPIF1<0.由SKIPIF1<0=1得SKIPIF1<0=1,所以SKIPIF1<0=SKIPIF1<0,故數(shù)列{SKIPIF1<0}的通項(xiàng)公式為SKIPIF1<0=SKIPIF1<0.(Ⅱ)SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0故SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,SKIPIF1<0=SKIPIF1<0=SKIPIF1<0所以數(shù)列{SKIPIF1<0}的前SKIPIF1<0項(xiàng)和為SKIPIF1<0.7.(2016年天津高考)已知SKIPIF1<0是各項(xiàng)均為正數(shù)的等差數(shù)列,公差為SKIPIF1<0,對(duì)任意的SKIPIF1<0,SKIPIF1<0是SKIPIF1<0和SKIPIF1<0的等差中項(xiàng).(Ⅰ)設(shè)SKIPIF1<0,求證:數(shù)列SKIPIF1<0是等差數(shù)列;(Ⅱ)設(shè)SKIPIF1<0,求證:SKIPIF1<0【解析】(Ⅰ)由題意得SKIPIF1<0,有SKIPIF1<0,因此SKIPIF1<0,所以數(shù)列SKIPIF1<0是等差數(shù)列.(Ⅱ)SKIPIF1<0 SKIPIF1<0SKIPIF1<0SKIPIF1<0.所以SKIPIF1<0.8.(2011安徽)在數(shù)1和100之間插入SKIPIF1<0個(gè)實(shí)數(shù),使得這SKIPIF1<0個(gè)數(shù)構(gòu)成遞增的等比數(shù)列,將這SKIPIF1<0個(gè)數(shù)的乘積記作SKIPIF1<0,再令SKIPIF1<0SKIPIF1<0.(Ⅰ)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(Ⅱ)設(shè)SKIPIF1<0求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【解析】(Ⅰ)設(shè)SKIPIF1<0構(gòu)成等比數(shù)列,其中SKIPIF1<0則SKIPIF1<0①SKIPIF1<0②①×②并利用SKIPIF1<0SKIPIF1<0(Ⅱ)由題意和(Ⅰ)中計(jì)算結(jié)果,知SKIPIF1<0另一方面,利用SKIPIF1<0得SKIPIF1<0所以SKIPIF1<0SKIPIF1<09.(2014山東)已知等差數(shù)列SKIPIF1<0的公差為2,前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列.(Ⅰ)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(Ⅱ)令SKIPIF1<0=SKIPIF1<0求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【解析】(Ⅰ)SKIPIF1<0解得SKIPIF1<0(Ⅱ)SKIPIF1<0,當(dāng)SKIPIF1<0為偶數(shù)時(shí)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.10.(2013廣東)設(shè)各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,滿足SKIPIF1<0,SKIPIF1<0,且構(gòu)成等比數(shù)列.(Ⅰ)證明:;(Ⅱ)求數(shù)列的通項(xiàng)公式;(Ⅲ)證明:對(duì)一切正整數(shù),有.【解析】(Ⅰ)當(dāng)時(shí),,(Ⅱ)當(dāng)時(shí),,,當(dāng)時(shí),是公差的等差數(shù)列.構(gòu)成等比數(shù)列,,,解得,由(Ⅰ)可知,是首項(xiàng),公差的等差數(shù)列.?dāng)?shù)列的通項(xiàng)公式為.(Ⅲ)考點(diǎn)63錯(cuò)位相減法1.(2020全國(guó)Ⅲ理17)設(shè)等差數(shù)列SKIPIF1<0滿足SKIPIF1<0.(1)計(jì)算SKIPIF1<0,猜想SKIPIF1<0的通項(xiàng)公式并加以證明;(2)求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【思路導(dǎo)引】(1)利用遞推公式得出SKIPIF1<0,猜想得出SKIPIF1<0的通項(xiàng)公式,利用數(shù)學(xué)歸納法證明即可;(2)由錯(cuò)位相減法求解即可.【解析】(1)由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…猜想SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0.證明如下:(數(shù)學(xué)歸納法)當(dāng)SKIPIF1<0時(shí),顯然成立;(1)假設(shè)SKIPIF1<0時(shí),即SKIPIF1<0成立;其中SKIPIF1<0,由SKIPIF1<0SKIPIF1<0SKIPIF1<0(2)故假設(shè)成立,綜上(1)(2),∴SKIPIF1<0SKIPIF1<0(2)解法一:令SKIPIF1<0,則前項(xiàng)和SKIPIF1<0(1)由(1)兩邊同乘以2得:SKIPIF1<0(2)由(1)SKIPIF1<0(2)的SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0.解法二:由(1)可知,SKIPIF1<0SKIPIF1<0,①SKIPIF1<0,②由①SKIPIF1<0②得:SKIPIF1<0SKIPIF1<0SKIPIF1<0,即SKIPIF1<0.2.(2014新課標(biāo)I,文17)已知{SKIPIF1<0}是遞增的等差數(shù)列,SKIPIF1<0,SKIPIF1<0是方程SKIPIF1<0的根。(=1\*ROMANI)求{SKIPIF1<0}的通項(xiàng)公式;(=2\*ROMANII)求數(shù)列{SKIPIF1<0}的前SKIPIF1<0項(xiàng)和.【解析】(=1\*ROMANI)設(shè)數(shù)列{SKIPIF1<0}的公差為SKIPIF1<0,方程SKIPIF1<0兩根為2,3,由題得SKIPIF1<0=2,SKIPIF1<0=3,在SKIPIF1<0-SKIPIF1<0=2SKIPIF1<0,故SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0,∴數(shù)列{SKIPIF1<0}的通項(xiàng)公式為SKIPIF1<0=SKIPIF1<0.……6分(=2\*ROMANII)設(shè)數(shù)列{SKIPIF1<0}的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,由(=1\*ROMANI)知,SKIPIF1<0=SKIPIF1<0,則SKIPIF1<0=SKIPIF1<0,①SKIPIF1<0=SKIPIF1<0,②①-②得SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0.……12分3.(2015浙江)已知數(shù)列SKIPIF1<0和SKIPIF1<0滿足,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0.(Ⅰ)求SKIPIF1<0與SKIPIF1<0;(Ⅱ)記數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,求SKIPIF1<0.【解析】(Ⅰ)由SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0故SKIPIF1<0.當(dāng)SKIPIF1<0SKIPIF1<0時(shí),SKIPIF1<0整理得SKIPIF1<0所以SKIPIF1<0.(Ⅱ)由(Ⅰ)知,SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.4.(2013湖南)設(shè)為數(shù)列{}的前項(xiàng)和,已知,2,N(Ⅰ)求,,并求數(shù)列的通項(xiàng)公式;(Ⅱ)求數(shù)列{}的前項(xiàng)和.【解析】(Ⅰ)SKIPIF1<0SKIPIF1<0SKIPIF1<0-SKIPIF1<0(Ⅱ)SKIPIF1<0SKIPIF1<0上式左右錯(cuò)位相減:SKIPIF1<0SKIPIF1<0。5.(2016年山東高考)已知數(shù)列的前n項(xiàng)和SKIPIF1<0,是等差數(shù)列,且(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)令求數(shù)列的前n項(xiàng)和Tn.【解析】(Ⅰ)因?yàn)閿?shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,又SKIPIF1<0對(duì)SKIPIF1<0也成立,所以SKIPIF1<0.又因?yàn)镾KIPIF1<0是等差數(shù)列,設(shè)公差為SKIPIF1<0,則SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,解得SKIPIF1<0,所以數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0.(Ⅱ)由SKIPIF1<0,于是SKIPIF1<0,兩邊同乘以2,得SKIPIF1<0,兩式相減,得SKIPIF1<0SKIPIF1<0SKIPIF1<0.6.(2015湖北)設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,前SKIPIF1<0項(xiàng)和為SKIPIF1<0,等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(Ⅰ)求數(shù)列SKIPIF1<0,SKIPIF1<0的通項(xiàng)公式;(Ⅱ)當(dāng)SKIPIF1<0時(shí),記SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【解析】(Ⅰ)由題意有,SKIPIF1<0,即SKIPIF1<0.解得SKIPIF1<0或SKIPIF1<0,故SKIPIF1<0或SKIPIF1<0.(Ⅱ)由SKIPIF1<0,知SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,于是SKIPIF1<0,①SKIPIF1<0.②①-②可得SKIPIF1<0,故SKIPIF1<0SKIPIF1<0.7.(2013山東)設(shè)等差數(shù)列的前項(xiàng)和為,且,.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè)數(shù)列的前項(xiàng)和,且(λ為常數(shù)),令(SKIPIF1<0).求數(shù)列的前項(xiàng)和.【解析】(Ⅰ)設(shè)等差數(shù)列的首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0,由,得,解得,,.因此.(Ⅱ)由題意知:所以時(shí),故,所以,則兩式相減得整理得,所以數(shù)列的前SKIPIF1<0項(xiàng)和.8.(2017山東)已知SKIPIF1<0是各項(xiàng)均為正數(shù)的等比數(shù)列,且SKIPIF1<0,SKIPIF1<0.(Ⅰ)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(Ⅱ)如圖,在平面直角坐標(biāo)系SKIPIF1<0中,依次連接點(diǎn)SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0得到折線SKIPIF1<0SKIPIF1<0…SKIPIF1<0,求由該折線與直線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0所圍成的區(qū)域的面積.【解析】(Ⅰ)設(shè)數(shù)列的公比為SKIPIF1<0,由已知SKIPIF1<0.由題意得,所以,因?yàn)镾KIPIF1<0,所以,因此數(shù)列的通項(xiàng)公式為(Ⅱ)過(guò)…,向軸作垂線,垂足分別為…,,由(Ⅰ)得記梯形的面積為.由題意,所以…+=…+①又…+②①SKIPIF1<0②得=所以9.(2017天津)已知SKIPIF1<0為等差數(shù)列,前n項(xiàng)和為SKIPIF1<0,SKIPIF1<0是首項(xiàng)為2的等比數(shù)列,且公比大于0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(Ⅰ)求SKIPIF1<0和SKIPIF1<0的通項(xiàng)公式;(Ⅱ)求數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0.【解析】(Ⅰ)設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0.由已知SKIPIF1<0,得SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0.又因?yàn)镾KIPIF1<0,解得SKIPIF1<0.所以,SKIPIF1<0.由SKIPIF1<0,可得SKIPIF1<0①.由SKIPIF1<0,可得SKIPIF1<0②,聯(lián)立①②,解得SKIPIF1<0,SKIPIF1<0,由此可得SKIPIF1<0.所以,數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0,數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0.(Ⅱ)設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,上述兩式相減,得SKIPIF1<0SKIPIF1<0得SKIPIF1<0.所以,數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0.10.(2015湖北)設(shè)等差數(shù)列SKIPIF1<0的公差為d,前n項(xiàng)和為SKIPIF1<0,等比數(shù)列SKIPIF1<0的公比為q.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(Ⅰ)求數(shù)列SKIPIF1<0,SKIPIF1<0的通項(xiàng)公式;(Ⅱ)當(dāng)SKIPIF1<0時(shí),記SKIPIF1<0,求數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0.【解析】(Ⅰ)由題意有,SKIPIF1<0,即SKIPIF1<0.解得SKIPIF1<0或SKIPIF1<0,故SKIPIF1<0或SKIPIF1<0.(Ⅱ)由SKIPIF1<0,知SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,于是SKIPIF1<0,①SKIPIF1<0.②①-②可得SKIPIF1<0,故SKIPIF1<0SKIPIF1<0.11.(2014四川)設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,點(diǎn)SKIPIF1<0在函數(shù)SKIPIF1<0的圖象上(SKIPIF1<0).(Ⅰ)若SKIPIF1<0,點(diǎn)SKIPIF1<0在函數(shù)SKIPIF1<0的圖象上,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0;(Ⅱ)若SKIPIF1<0,函數(shù)SKIPIF1<0的圖象在點(diǎn)SKIPIF1<0處的切線在SKIPIF1<0軸上的截距為SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【解析】(Ⅰ)點(diǎn)SKIPIF1<0在函數(shù)SKIPIF1<0的圖象上,所以SKIPIF1<0,又等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,所以SKIPIF1<0.因?yàn)辄c(diǎn)SKIPIF1<0在函數(shù)SKIPIF1<0的圖象上,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0.(Ⅱ)由SKIPIF1<0,函數(shù)SKIPIF1<0的圖象在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0所以切線在SKIPIF1<0軸上的截距為SKIPIF1<0,從而SKIPIF1<0,故SKIPIF1<0從而SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0所以SKIPIF1<0SKIPIF1<0故SKIPIF1<0.12.(2012浙江)已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0=,n∈N﹡,數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0.(Ⅰ)求SKIPIF1<0;(Ⅱ)求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【解析】(Ⅰ)由SKIPIF1<0=,得當(dāng)SKIPIF1<0=1時(shí),;當(dāng)SKIPIF1<02時(shí),,SKIPIF1<0.由SKIPIF1<0,得,SKIPIF1<0.(Ⅱ)由(1)知,SKIPIF1<0所以,,,SKIPIF1<0.考點(diǎn)64并項(xiàng)法與倒序求和法1.(2011安徽)若數(shù)列的通項(xiàng)公式是SKIPIF1<0,則SKIPIF1<0=A.15B.12C.-12D.-15【答案】A【解析】SKIPIF1<0SKIPIF1<0.考點(diǎn)65數(shù)列綜合問(wèn)題1.(2017?新課標(biāo)Ⅰ,理12)幾位大學(xué)生響應(yīng)國(guó)家的創(chuàng)業(yè)號(hào)召,開(kāi)發(fā)了一款應(yīng)用軟件.為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動(dòng).這款軟件的激活碼為下面數(shù)學(xué)問(wèn)題的答案:已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,SKIPIF1<0,其中第一項(xiàng)是SKIPIF1<0,接下來(lái)的兩項(xiàng)是SKIPIF1<0,SKIPIF1<0,再接下來(lái)的三項(xiàng)是SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,依此類推.求滿足如下條件的最小整數(shù)SKIPIF1<0且該數(shù)列的前SKIPIF1<0項(xiàng)和為2的整數(shù)冪.那么該款軟件的激活碼是SKIPIF1<0SKIPIF1<0A.440 B.330 C.220 D.110【解析】設(shè)該數(shù)列為SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,由題意可設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則SKIPIF1<0,可知當(dāng)SKIPIF1<0為SKIPIF1<0時(shí)SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,即為SKIPIF1<0,容易得到SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0項(xiàng),由SKIPIF1<0,SKIPIF1<0,可知SKIPIF1<0,故SKIPIF1<0項(xiàng)符合題意.SKIPIF1<0項(xiàng),仿上可知SKIPIF1<0,可知SKIPIF1<0,顯然不為2的整數(shù)冪,故SKIPIF1<0項(xiàng)不符合題意.SKIPIF1<0項(xiàng),仿上可知SKIPIF1<0,可知SKIPIF1<0,顯然不為2的整數(shù)冪,故SKIPIF1<0項(xiàng)不符合題意.SKIPIF1<0項(xiàng),仿上可知SKIPIF1<0,可知SKIPIF1<0,顯然不為2的整數(shù)冪,故SKIPIF1<0項(xiàng)不符合題意.故選SKIPIF1<0.2.(2016?新課標(biāo)Ⅲ,理12)定義“規(guī)范01數(shù)列”SKIPIF1<0如下:SKIPIF1<0共有SKIPIF1<0項(xiàng),其中SKIPIF1<0項(xiàng)為0,SKIPIF1<0項(xiàng)為1,且對(duì)任意SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0中0的個(gè)數(shù)不少于1的個(gè)數(shù),若SKIPIF1<0,則不同的“規(guī)范01數(shù)列”共有SKIPIF1<0SKIPIF1<0A.18個(gè) B.16個(gè) C.14個(gè) D.12個(gè)【答案】C【解析】由題意可知,“規(guī)范01數(shù)列”有偶數(shù)項(xiàng)SKIPIF1<0項(xiàng),且所含0與1的個(gè)數(shù)相等,首項(xiàng)為0,末項(xiàng)為1,若SKIPIF1<0,說(shuō)明數(shù)列有8項(xiàng),滿足條件的數(shù)列有:0,0,0,0,1,1,1,1;0,0,0,1,0,1,1,1;0,0,0,1,1,0,1,1;0,0,0,1,1,1,0,1;0,0,1,0,0,1,1,1;0,0,1,0,1,0,1,1;0,0,1,0,1,1,0,1;0,0,1,1,0,1,0,1;0,0,1,1,0,0,1,1;0,1,0,0,0,1,1,1;0,1,0,0,1,0,1,1;0,1,0,0,1,1,0,1;0,1,0,1,0,0,1,1;0,1,0,1,0,1,0,1.共14個(gè),故選SKIPIF1<0.3.(2013新課標(biāo)Ⅰ,理12)設(shè)△AnBnCn的三邊長(zhǎng)分別為an,bn,cn,△AnBnCn的面積為Sn,n=1,2,3,…若b1>c1,b1+c1=2a1,an+1=an,bn+1=eq\f(cn+an,2),cn+1=eq\f(bn+an,2),則( )A.{Sn}為遞減數(shù)列 B。{Sn}為遞增數(shù)列QUOTE C.{S2n-1}為遞增數(shù)列,{S2n}為遞減數(shù)列D.{S2n-1}為遞減數(shù)列,{S2n}為遞增數(shù)列 【答案】B【解析】∵SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0,∵SKIPIF1<0=SKIPIF1<0,SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0+SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0+SKIPIF1<0-SKIPIF1<0=SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0,由余弦定理得SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,∵SKIPIF1<0SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0>SKIPIF1<0(∵SKIPIF1<0),∴SKIPIF1<0>SKIPIF1<0,故SKIPIF1<0為遞增數(shù)列,故選B.4.(2019浙江10)設(shè)a,b∈R,數(shù)列{an}中an=a,an+1=an2+b,,則A.當(dāng)b=時(shí),a10>10 B.當(dāng)b=時(shí),a10>10 C.當(dāng)b=-2時(shí),a10>10 D.當(dāng)b=-4時(shí),a10>10【答案】A【解析】對(duì)于B,令QUOTEx2-λ+14=0,得QUOTEλ=12,

取QUOTEa1=12,所以QUOTE∴a2=12,…,an=12<10,

所以QUOTE∴當(dāng)QUOTEb=14時(shí),QUOTEa10<10,故B錯(cuò)誤;

對(duì)于C,令QUOTEx2-λ-2=0,得QUOTEλ=2或QUOTEλ=-1,

取QUOTEa1=2,所以QUOTE∴a2=2,所以QUOTE∴當(dāng)QUOTEb=-2時(shí),QUOTEa10<10,故C錯(cuò)誤;

對(duì)于D,令QUOTEx2-λ-4=0,得QUOTEλ=1±172,取QUOTEa1=1+172,所以QUOTE∴a2=1+172,QUOTE……,QUOTEan=1+172<10,

所以當(dāng)QUOTEb=-4時(shí),QUOTEa10<10,故D錯(cuò)誤;

對(duì)于A,QUOTEa2=a2+12≥12,QUOTEa3=(a2+12)2+12≥34,QUOTEa4=(a4+a2+34)2+12≥916+12=1716>1,

QUOTEan+1-an>0,QUOTE{an}遞增,當(dāng)QUOTEn≥4時(shí),QUOTEan+1an=an+12an>1+12=32,所以QUOTE∴a5a4>32a4a5>32???a10a9>32,所以QUOTE∴a10a4>(32)6,所以QUOTE∴a10>72964>10.故A正確.故選A.5.(2015湖北)設(shè)SKIPIF1<0,SKIPIF1<0.若p:SKIPIF1<0成等比數(shù)列;q:SKIPIF1<0SKIPIF1<0,則A.p是q的充分條件,但不是q的必要條件B.p是q的必要條件,但不是q的充分條件C.p是q的充分必要條件D.p既不是

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論