版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教數(shù)學第五章圖形的性質(zhì)(一)第22講平行四邊形要點梳理
1.n邊形以及四邊形的性質(zhì)(1)n邊形的內(nèi)角和為,外角和為_,對角線條數(shù)為.(2)四邊形的內(nèi)角和為,外角和為,對角線條數(shù)為.(3)正多邊形的定義:各條邊都,且各內(nèi)角都的多邊形叫正多邊形.(n-2)·180°360°360°360°2相等相等要點梳理
2.平行四邊形的性質(zhì)以及判定(1)性質(zhì):①平行四邊形兩組對邊分別;②平行四邊形對角,鄰角;③平行四邊形對角線;④平行四邊形是對稱圖形.平行且相等相等互補互相平分中心要點梳理
(2)判定方法:①定義:的四邊形是平行四邊形;②的四邊形是平行四邊形;③的四邊形是平行四邊形;④的四邊形是平行四邊形;⑤的四邊形是平行四邊形.兩組對邊分別平行一組對邊平行且相等兩組對邊分別相等兩組對角分別相等對角線互相平分要點梳理
3.三角形中位線定理三角形的中位線平行于第三邊,且等于第三邊的一半.一個方法面積法:在三角形和平行四邊形中,運用“等積法”進行求解,以不同的邊為底,其高也不相同,但面積是定值,從而得到不同底和高的關(guān)系.一個防范圖形的直觀性可幫助探求解題思路,但也可能因直觀判斷失誤或用直觀判斷代替嚴密推理,造成解題失誤.一定要對所有直觀判斷加以證明,不可以用直觀判斷代替嚴密的推理.四個誤區(qū)誤區(qū)一:一組對邊平行,另一組對邊相等的四邊形是平行四邊形;誤區(qū)二:一組對邊相等,一組對角相等的四邊形是平行四邊形;誤區(qū)三:一組對邊相等,一條對角線平分另一條對角線的四邊形是平行四邊形;誤區(qū)四:一組對角相等,一條對角線平分另一條對角線的四邊形是平行四邊形.
四種輔助線(1)常用連對角線的方法把四邊形問題轉(zhuǎn)化為三角形的問題;(2)有平行線時,常作平行線構(gòu)造平行四邊形;(3)有中線時,常作加倍中線構(gòu)造平行四邊形;(4)圖形具有等鄰邊特征時(如:等腰三角形、等邊三角形、菱形、正方形等),可以通過引輔助線把圖形的某一部分繞等鄰邊的公共端點旋轉(zhuǎn)到另一位置.1.(2014·畢節(jié))如圖,一個多邊形紙片按圖示的剪法剪去一個內(nèi)角后,得到一個內(nèi)角和為2340°的新多邊形,則原多邊形的邊數(shù)為(
)A.13
B.14
C.15
D.16B2.(2014·濟南)如圖,在?ABCD中,延長AB到點E,使BE=AB,連接DE交BC于點F,則下列結(jié)論不一定成立的是(
)A.∠E=∠CDF
B.EF=DFC.AD=2BF
D.BE=2CFD3.(2014·新疆)四邊形ABCD中,對角線AC與BD交于點O,下列條件不能判定這個四邊形是平行四邊形的是(
)A.OA=OC,OB=OD
B.AD∥BC,AB∥DCC.AB=DC,AD=BC
D.AB∥DC,AD=BCD4.(2014·河北)如圖,△ABC中,D,E分別是邊AB,AC的中點.若DE=2,則BC=(
)A.2B.3C.4D.5C5.(2014·河南)如圖,?ABCD的對角線AC與BD相交于點O,AB⊥AC,若AB=4,AC=6,則BD的長是(
)A.8B.9C.10D.11
C平行四邊形的判定【例1】
(2014·徐州)如圖,在平行四邊形ABCD中,點E,F(xiàn)在AC上,且AE=CF.求證:四邊形BEDF是平行四邊形.解:證明:連接BD,設對角線交于點O.∵四邊形ABCD是平行四邊形,∴OA=OC,OB=OD.∵AE=CF,OA-AE=OC-CF,∴OE=OF.∴四邊形BEDF是平行四邊形【點評】探索平行四邊形成立的條件,有多種方法判定平行四邊形:①若條件中涉及角,考慮用“兩組對角分別相等”或“兩組對邊分別平行”來證明;②若條件中涉及對角線,考慮用“對角線互相平分”來說明;③若條件中涉及邊,考慮用“兩組對邊分別平行”或“一組對邊平行且相等”來證明,也可以巧添輔助線,構(gòu)建平行四邊形.1.(2013·鞍山)如圖,E,F(xiàn)是四邊形ABCD的對角線AC上兩點,AF=CE,DF=BE,DF∥BE.求證:(1)△AFD≌△CEB;(2)四邊形ABCD是平行四邊形.解:證明:(1)∵DF∥BE,∴∠DFE=∠BEF,∴∠DFA=∠BEC.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS)(2)由(1)知△AFD≌△CEB,∴∠DAC=∠BCA,AD=BC,∴AD∥BC,∴四邊形ABCD是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形)平行四邊形相關(guān)邊、角、周長與面積問題
【例2】
(2014·懷化)如圖,在平行四邊形ABCD中,∠B=∠AFE,EA是∠BEF的角平分線.求證:(1)△ABE≌△AFE;(2)∠FAD=∠CDE.解:證明:(1)∵EA是∠BEF的角平分線,∴∠1=∠2,在△ABE和△AFE中,??í?ì∠B=∠AFE,∠1=∠2,AE=AE,∴△ABE≌△AFE(AAS)
(2)∵△ABE≌△AFE,∴AB=AF,∵四邊形ABCD平行四邊形,∴AB=CD,AD∥CB,AB∥CD,∴AF=CD,∠ADF=∠DEC,∠B+∠C=180°,∵∠B=∠AFE,∠AFE+∠AFD=180°,∴∠AFD=∠C,在△AFD和△DCE中,??í?ì∠ADF=∠FEC,∠C=∠AFD,AF=DC,∴△AFD≌△DCE(AAS),∴∠FAD=∠CDE
【點評】平行四邊形對邊相等,對邊平行,對角相等,鄰角互補,對角線互相平分,利用這些性質(zhì)可以解決與平行四邊形相關(guān)的問題,也可將四邊形的問題轉(zhuǎn)化為三角形的問題.2.(2013·寧夏)在?ABCD中,P是AB邊上的任意一點,過P點作PE⊥AB,交AD于E,連接CE,CP,已知∠A=60°.(1)若BC=8,AB=6,當AP的長為多少時,△CPE的面積最大,并求出面積的最大值;(2)試探究當△CPE≌△CPB時,?ABCD的兩邊AB與BC應滿足什么關(guān)系?解:(1)延長PE交CD的延長線于F,設AP=x,△CPE的面積為y,∵四邊形ABCD為平行四邊形,∴AB=DC=6,AD=BC=8,∵Rt△APE,∠A=60°,∴∠PEA=30°,∴AE=2x,PE=3x,∵AB∥CD,PF⊥AB,∴PF⊥CD,在Rt△DEF中,∠DEF=∠PEA=30°,DE=AD-AE=8-2x,∴DF=12DE=4-x,F(xiàn)C=DC+DF=10-x,∴S△CPE=12PE·CF,即y=12×3x×(10-x)=-32x2+53x,配方得:y=-32(x-5)2+2532,當x=5時,y有最大值2532,即AP的長為5時,△CPE的面積最大,最大面積是2532
(2)當△CPE≌△CPB時,有BC=CE,∠B=∠PEC=120°,
∴∠CED=180°-∠AEP-∠PEC=30°,∵∠ADC=120°,
∴∠ECD=∠CED=180°-120°-30°=30°,∴DE=CD,即△EDC是等腰三角形,過D作DM⊥CE于M,則CM=12CE,在Rt△CMD中,∠ECD=30°,∴cos30°=CMCD=32,∴CM=32CD,∴CE=3CD,∵BC=CE,AB=CD,∴BC=3AB,則當△CPE≌△CPB時,BC與AB滿足的關(guān)系為BC=3AB
運用平行四邊形的性質(zhì)進行推理論證【例3】
(2014·聊城)如圖,四邊形ABCD是平行四邊形,作AF∥CE,BE∥DF,AF交BE與G點,交DF與F點,CE交DF于H點,交BE于E點.求證:△EBC≌△FDA.解:證明:∵四邊形ABCD是平行四邊形,∴AD=BC,AD∥BC,∵AF∥CE,BE∥DF,∴四邊形BHDK和四邊形AMCN是平行四邊形,∴∠FAD=∠ECB,∠ADF=∠EBC,
在△EBC和△FDA中,??í?ì∠EBC=∠ADF,BC=AD,∠BCE=∠DAF,∴△EBC≌△FDA(ASA)
【點評】利用平行四邊形的性質(zhì),可以證角相等、線段相等,其關(guān)鍵是根據(jù)所要證明的全等三角形,選擇需要的邊、角相等條件;也可以證明相關(guān)聯(lián)的四邊形是平行四邊形.3.(1)(2013·益陽)如圖,在平行四邊形ABCD中,下列結(jié)論中錯誤的是(
)A.∠1=∠2B.∠BAD=∠BCDC.AB=CDD.AC⊥BDD(2)(2014·賀州)如圖,四邊形ABCD是平行四邊形,E,F(xiàn)是對角線BD上的點,∠1=∠2.①求證:BE=DF;②求證:AF∥CE.解:(2)證明:①∵四邊形ABCD是平行四邊形,∴AB=CD,AB∥CD,∴∠5=∠3,∵∠1=∠2,∴∠AEB=∠4,在△ABE和△CDF中,??í?ì∠AEB=∠4,∠3=∠5,AB=CD,
∴△ABE≌△CDF(AAS),∴BE=DF;②由①得△ABE≌△CDF,∴AE=CF,∵∠1=∠2,∴AE∥CF,∴四邊形AECF是平行四邊形,∴AF∥CE
三角形中位線定理【例4】
(2013·鞍山)如圖,D是△ABC內(nèi)一點,BD⊥CD,AD=6,BD=4,CD=3,E,F(xiàn),G,H分別是AB,AC,CD,BD的中點,則四邊形EFGH的周長是.11【點評】當已知三角形一邊中點時,可以設法找出另一邊的中點,構(gòu)造三角形中位線,進一步利用三角形的中位線定理,證明線段平行或倍分問題.4.(2014·邵陽)如圖,在Rt△ABC中,∠C=90°,D為AB的中點,DE⊥AC于點E.∠A=30°,AB=8,則DE的長度是.2試題如圖,已知六邊形ABCDEF的六個內(nèi)角均為120°,CD=10cm,BC=8cm,AB=8cm,AF=5cm,求此六邊形的周長.錯解解:如圖,連接EB,DA,F(xiàn)C,分別交于點M,N,P.∵∠FED=∠EDC=120°,∴∠DEM=∠EDM=60°,∴△DEM是等邊三角形.同理,△MAB,△NFA也是等邊三角形.∴FN=AF=5,MA=AB=8.∵∠EFA=120°,∴∠EFC=60°,∴ED∥FC,同理,EF∥DN.∴四邊形EDNF是平行四邊形.同理,四邊形EMAF也是平行四邊形,∴ED=FN=5,EF=MA=8.∴六邊形ABCDEF的周長=AB+BC+CD+DE+EF+FA=8+8+10+5+8+5
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年道路運輸服務項目資金籌措計劃書代可行性研究報告
- 2023年汽、柴油深度加氫催化劑投資申請報告
- 2024年煙度計項目投資申請報告代可行性研究報告
- 十字相乘法課件
- 《故事口才故事會》課件
- 消防知識國旗下講話稿(33篇)
- 門面房租賃合約合同(31篇)
- 社區(qū)環(huán)境調(diào)查報告
- 四川省遂寧市蓬溪縣2024屆九年級上學期期末考試數(shù)學試卷(含答案)
- 貴州省六盤水市2023-2024學年高二上學期1月期末質(zhì)量監(jiān)測試題 數(shù)學 含答案
- 外派與異地工作管理制度
- 2024年《高等數(shù)學2》教案設計:案例分析與啟示
- 2024年天翼云從業(yè)者認證考試題庫
- 2025年國家保安員資格考試題庫
- 水錘泵課件教學課件
- 倉庫組長年終總結(jié)報告
- 老年患者手術(shù)中護理
- 浦發(fā)銀行個人信用貸款合同
- 2023年遵義市第一人民醫(yī)院招聘筆試真題
- 四年級數(shù)學(上)計算題專項練習及答案
- 北京市西城區(qū)2022-2023學年高二上學期期末考試 化學試卷 附答案
評論
0/150
提交評論