基尼系數(shù)、泰爾指數(shù)等幾個公平性評價的介紹(英文)_第1頁
基尼系數(shù)、泰爾指數(shù)等幾個公平性評價的介紹(英文)_第2頁
基尼系數(shù)、泰爾指數(shù)等幾個公平性評價的介紹(英文)_第3頁
基尼系數(shù)、泰爾指數(shù)等幾個公平性評價的介紹(英文)_第4頁
基尼系數(shù)、泰爾指數(shù)等幾個公平性評價的介紹(英文)_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

TheTheoreticalBasicsofPopularInequalityMeasures

TravisHale,UniversityofTexasInequalityProject

Thisdocumentexploresseveralinequalitymeasuresusedbroadlyintheliterature,withaspecialemphasisonhowtocomputeTheil'sTstatistic.Inequalityisrelatedtoseveralmathematicalconcepts,includingdispersion,skewness,andvariance.Asaresult,therearemanywaystomeasureinequality,whichitselfarisesfromvarioussocialandphysicalphenomena.Whilethisisnotanexhaustivediscussionofinequalitymeasures,itdoesdealwithseveralofthemostpopularstatistics.Severalexamplesareincludedthatpertaintoinequalityofsalarieswithintwofictionalcompanies—UniversalWidgetandWorldwideWidget—butalloftheinequalitymeasuresdiscussedapplytoabroadsetofresearchquestions.Thesalaryschedulesfortheexampleproblemsarebelow,followedbydiscussionsofrange,rangeratios,theMcLooneIndex,thecoefficientofvariation,andtheGiniCoefficient.FollowingthesebriefintroductionsisanextendeddescriptionofTheil'sTstatistic.

UniversalWidgetSalarySchedule

Position

#ofEmployeesinPosition

ExactAnnualSalary

CustodialStaff

7

$18,000.00

OfficeStaff

10

$22,000.00

EquipmentOperators

280

$25,000.00

EquipmentTechnicians

15

$35,000.00

Foremen

15

$40,000.00

Salespersons

50

$60,000.00

Engineers

10

$75,000.00

Managers

6

$80,000.00

VicePresidents

4

$120,000.00

SeniorVicePresidents

2

$200,000.00

CEO

1

$1,000,000.00

WorldwideWidgetSalarySchedule

Position

#ofEmployeesinPosition

ExactAnnualSalary

CustodialStaff

12

$15,000.00

OfficeStaff

25

$20,000.00

EquipmentOperators

1000

$30,000.00

EquipmentTechnicians

35

$35,000.00

Foremen

100

$45,000.00

Salespersons

80

$50,000.00

Managers

10

$60,000.00

Engineers

25

$80,000.00

VicePresidents

8

$175,000.00

SeniorVicePresidents

4

$250,000.00

CEO

1

$5,000,000.00

Range

Perhapsthesimplestmeasureofdispersion,therangemerelycalculatesthedifferencebetweenthehighestandlowestobservationsofaparticularvariableofinterest.Strengthsoftherangeincludeitsmathematicalsimplicityandeaseofunderstanding.However,itisaverylimitedmeasure.Therangeonlyusestwoobservationsfromtheoverallset,itdoesnotweightobservationsbyimportantunderlyingcharacteristics(likethepopulationofastate,theexperienceofanemployee,etc.),anditissensitivetoinflationarypressures.Inthecaseofacompany,therangebetweenthesalariesofthehighestandlowestpaidemployeesmaynotgivemuchinformation.ForUniversalWidget,therangeinsalariesis$982,000($1,000,000-$18,000),whileforWorldwideWidgettherangeis$4,985,000($5,000,000-$15,000).DoesthismeanthatWorldwideWidgethasamuchmoreunequalwagestructurethanUniversalWidget?Notwithoutfurtherevidence.

RangeRatios

Tofindtherangeratioforacertainvariable,dividethevalueatacertainpercentile(usuallyabovethemedian)bythevalueatalowerpercentile(usuallybelowthemedian).OnerangeratiooftenusedinthestudyofinequalityineducationalexpendituresistheFederalRangeRatio,whichdividesthedifferencebetweentherevenueforthestudentatthe95thpercentileandthe5thpercentilebytherevenueforthestudentatthe95thpercentile.1Anotherpopularrangeratioistheinter-quartilerangeratio.Subtractingtheobservationatthe25thpercentilebytheobservationatthe75thpercentileresultsinaquantityknownastheinter-quartilerange,anddividingtheobservationatthe75thpercentilebythe25thpercentilecalculatestheinter-quartilerangeratio.Rangeratioscanmeasureallsortsofinequalitiesandthepercentilescanbeconstructedinanymanner.Arangeratiocantakeonanyvaluebetweenoneandinfinity,andsmallervaluesreflectlowerinequality.

Usingtheexampledata,onecancomputea90:10rangeratioforthetwowidgetcompanies.ForUniversalWidget,the90thpercentilefallsatasalaryof$60,000andthe10thpercentileis$25,000.Thus,the90:10rangeratiois$60,000/$25,000or2.4.ForWorldwideWidget,the90thpercentilefallsatasalaryof$35,000andthe10thpercentileis$30,000.Therefore,the90:10rangeratiois$35,000/$30,000or1.17.Giventhisinformation,WorldwideWidgethasamoreequalpaystructure,theoppositeconclusiongleanedfromtherange.

Rangeratiosareeasytounderstandandsimpletocompute.Theycandirectlycomparesthe“haves”-observationsatthe90thpercentileorelsewhereabovethemedianvalue-withthe“have-nots”-observationsatthe10thpercentileorelsewherebelowthemedian,withoutbeingsensitivetooutliersattheverytoporverybottomofthedistribution.However,liketherange,rangeratiosonlylookattwodistinctdatapoints,throwingawaythegreatmajorityofthedata.Becauseofthissignificantlimitation,researchersoftenemploymoresophisticatedinequalitymeasures.

McLooneIndex

TheMcLooneIndexisanotherexampleofameasurethatcomparesonepartofadistributiontoanother.However,theMcLooneIndextakesamuchlargerproportionofthedataintoaccount.Itcompareshowmuchofaresourceisconcentratedinthebottomhalfofadistributiontothemedianamount.TocomputetheMcLooneIndexvalue,dividethesumofalloftheobservationsatorbelowthemedianlevelbytheproductofthenumberofobservationsatorbelowthemedianlevelandthevalueofthemedianlevel.ValuesoftheMcLooneIndexareboundbelowbyzero-ifthelowerhalfofthedistributionreceivesnoneoftheresource-andabovebyone-iftherearenoobservationsbelowthemedian.Thelattercasewouldoccurifthelowestvalueissharedbyatleasthalfoftheobservations.Unlikemostinequalitymeasures,ahighervaluefortheMcLooneIndexdescribesamoreequitabledistribution.

Forexample,theUniversalWidgetCompanyhas400employees.Themediansalaryvalueisapproximatelythatofthe200thleastcompensatedemployee.ThatemployeeisanEquipmentOperatorwhomakes$25,000.TheMcLooneIndexistheratiooftheactualsalariesoftheleastpaidhalfoftheUniversalWidgetworkforcetothecounterfactualdenominatorof$25,000*200=5,000,000.ThustheMcLooneIndexforUniversalWidgetequals(7*18,000+10*22,000+183*25,000)/5,000,000or.9842.ParallelcomputationsrevealthatWorldwideWidgethasaMcLooneIndexvalueof.9595.ThisleadstoaconclusionthatUniversalhasamoreequalpaystructure.

TheMcLooneIndexisrelativelyeasytounderstand,andmightbeanappropriatemeasureifresearchersareprimarilyinterestedinthebottomofadistribution.Ifthemedianobservationreflectsan“adequatee”nthlevMeclL,otohneIndexgivessomesenseofhowthebottomhalfofthedistributionisdoingcomparedthemiddle.However,theMcLooneIndexhassomepotentiallyobjectionableproperties.First,itdoesnotuseallinformation,throwingawaytheobservationsabovethemedian.Certainlythereisasubstantialdifferencebetweenadistributionwherethehighervaluesliejustabovethemedianandonewheresomeobservationsliefarbeyondthemedian.TheMcLooneIndexcomparesrealitywithacounterfactualmodel,sotheresearchermaybeaskedtojustifythecomparisonofrealitytoanalternativewheretheentirebottomhalfofthedistributionsharesthemedianvalue.WhiletheMcLooneIndexhasthusfarbeenconcernedprimarilywithschoolfinanceinequalitymeasurement,therearesimilarmeasureswithbroaderapplication,andthereisnoreasonthattheMcLooneIndexitselfcouldnotbeappliedtootherphenomena.

TheCoefficientofVariation

Thecoefficientofvariationissimplythestandarddeviationofavariabledividedbythemean.2Graphically,thecoefficientofvariationdescribesthepeakednessofaunimodalfrequencydistribution.Foradatasetthatiscloselybunchedaroundthemean,thepeakwillbehigh,andthecoefficientofvariationsmall.Datathatismoredispersedwillhaveashorterpeakandahighercoefficientofvariation.Ceterisparibus,thesmallerthecoefficientofvariation,themoreequitablethedistribution.

Thefirststepincomputingcoefficientsofvariationforthesampledataistofindthemeanandstandarddeviationofeachset.Thisisfairlyeasytodowithstatisticssoftware,oraspreadsheetprogramsuchasMicrosoftExcel.UniversalWidgethasanaveragesalaryof$36,452.50andastandarddeviationof52,630.52.WorldwideWidgethasanaveragesalaryof$38,773.08andastandarddeviationof138,990.96.Thisleadstocoefficientsofvariationof1.44and3.58forUniversalandWorldwide,respectively,concludingthatUniversalhasthemoreequitablesalarystructure.

Thecoefficientofvariationhassomeattractiveproperties.Ifgroupdataisused,butweightedbypopulationsize,smalloutlyingobservationsdonotskewthedistributiongreatly.Individualswithevenalimitedstatisticalbackgroundarelikelytobefamiliarwiththestandarddeviationandsamplemean,makingthecoefficientofvariationeasytoexplaintoanon-technicalaudience.Furthermore,byconstruction,inflationdoesnotaffectthecoefficientofvariation.Adisadvantageofthemeasureisthat,theoretically,thecoefficientofvariationcantakeanyvaluebetweenzeroandinfinity,andthereisnouniversalstandardthatdefinesareasonablevalueofthemeasureforparticularphenomena.

TheGiniCoefficient

TheGinicoefficientderivesfromtheLorenzCurve.ToplotaLorenzcurve,ranktheobservationsfromlowesttohighestonthevariableofinterest,andthenplotthecumulativeproportionofthepopulationontheX-axisandthecumulativeproportionofthevariableofinterestontheY-axis.3TheGinicoefficientcomparesthiscumulativefrequencyandsizecurvetotheuniformdistributionthatrepresentsequality.Inthegraphicaldepictionbelow,adiagonallinerepresentsperfectequality,andthegreaterthedeviationoftheLorenzcurvefromthisline,thegreatertheinequality.TheGinicoefficientisdoubletheareabetweentheequalitydiagonalandtheLorenzcurve,boundedbelowbyzero(perfectequality)andabovebyone(thecasewhenasinglememberofthepopulationholdsallofaresource).

GraphicalRepresentaionoftheGiniCoefficient

1.2-i

■1

00.81

CumulativeProportionofPopulation

4>-q?」E>'5u.2'todo4>>4E-nluno

ThereareseveralwaystocomputetheGinicoefficientforadataset.ResearcherswhoarecomfortablewithCalculusandspreadsheetanalysisandhavealargeamountofdatathatresultsinsmoothplotscanestimateahighorderpolynomialfortheLorenzCurve(MicrosoftExcelwilladduptoa6thdegreepolynomialasatrendlineforanXYgraph),andthentakeanappropriateintegraltocomputethesizeoftheshadedarea.Likewise,otherestimationtechniques,suchasthemethodofrectangles,themethodoftrapezoids,orMonteCarlointegrationwillprovidereasonableestimates.Anotherwayto

computetheGiniisdirectlyfromanalgebraicformula.Giventhatthedataisorderedfromsmallesttolargestvaluesofthevariableofinterest,theformulais:

蘭(2i-n一1)x'

whereiistheindividual'srankordernumber,nisthe

G=

n2卩

numberoftotalindividuals,x'.istheindividual'svariablevalue,and卩isthepopulationaverage.4

TocomputetheGinicoefficientsforthesampledata,itiseasiesttoorganizethedatasuchthateachindividualisgivenhisorherownrecord(suchthatthesalaryscheduleforUniversalWidgethas400rows,oneforeachemployee).Aftersplittingthedatainthismanner,itisfairlystraightforwardtoapplytheformulaabove.ForUniversalWidget,theGinicoefficientis0.279625369,whileforWorldwideWidget,theGinicoefficientis0.227509252.

TheGinicoefficientisafull-informationmeasure,lookingatallpartsofthedistribution.Itisprobablythemostwell-knownandbroadlyusedmeasureofinequalityusedineconomicliterature.TheGinicoefficientfacilitatesdirectcomparisonoftwopopulations,regardlessoftheirsizes.Inotherwords,withtheGinicoefficientonecandirectlycomparetheinequalityinaclassroomtotheinequalityinacountry.WhiletheactualcomputationoftheGinicoefficientmayincludetakinganintegralorusingaslightlycomplexformula,thevisualdescriptioniselegantandeasytounderstand.TheGinicoefficientdoessufferfromthelackofatruezero,andtheneedforacontext.Whileadistributionalpolicy,likegivingeveryonebelowthepovertyline$1,000,hasrealimplications,therepercussionsofa5%reductionoftheGinicoefficientaremuchlessclear.

Theil'sTStatistic

Theinequalitymeasuresdiscussedaboveareeachappropriateincertaincircumstances.TherationaleforpreferringTheil'sTstatisticisnotthatthereissomeinherentflawintheothermeasures,butthatTheil'sThasamoreflexiblestructurethatoftenmakesitmoreappropriate.Ifaresearcheralwayshadaccesstocomplete,individualleveldataforthepopulationofinterest,thenmeasureslikethecoefficientofvariationortheGinicoefficientwouldusuallybesufficientfordescribinginequality.However,inpractice,individualdataisrarelyavailable,andresearchersareaskedtomakeduewithaggregateddata.Returningtotheexampleproblemillustratesthepoint.WhatiftheUniversalWidgetsalaryscheduledidnotreflecttheexactsalaryforeachemployeebuttheaveragesalaryovereachjobcategory?ItwouldbepossibletocomputevaluesforthecoefficientofvariationortheGinicoefficientundertheassumptionthateachemployeereceivesexactlytheaveragesalary,buttheresultswouldonlygiveanupperorlowerboundofeachinequalitymeasure,becausevariancewithineachjobcategorywillcontributetototalinequality.Formostpracticaldata,datathathassomedegreeofaggregationoranunderlyinghierarchy(e.g.citieswithinregionswithinnations),Theil'sTstatisticisoftenamoreappropriateandtheoreticallysoundtool.5

ThefollowingformulaegivethealgebrabehindTheil'sTstatistic.Whiletheseparticularequationsuseincomeasthevariableofinterest,Theil'sTcanaddressanynumberofquantifiablephenomena.Whenhouseholddataisavailable,Theil'sTstatistic

is6:

n

=x<

*

(、

*ln

(、

p=1

ln丿

冷yJ

冷y丿

[1]

wherenisthenumberofindividualsinthepopulation,ypistheincomeofthepersonindexedbyp,and巴isthepopulation'saverageincome.Ifeveryindividualhasexactlythesameincome,Twillbezero;thisrepresentsperfectequalityandistheminimumvalueofTheil'sT.Ifoneindividualhasalloftheincome,Twillequallnn;thisrepresentsutmostinequalityandisthemaximumvalueofTheil'sTstatistic.

Ifmembersofapopulationcanbeclassifiedintomutuallyexclusiveandcompletelyexhaustivegroups,thenTheil'sTstatisticismadeupoftwocomponents,thebetweengroupelement(T'g)andthewithingroupelement(Twg).

gg

[2]T=T'g+Twg

Whenaggregateddataisavailableinsteadofindividualdata,T'gcanbeusedasalowerboundforthepopulation'svalueofTheil'sTstatistic.ThebetweengroupelementofTheil'sTcanbewrittenas:

[3]

i=1

顯丿J

whereiindexesthegroups,piisthepopulationofgroupi,Pisthetotalpopulation,yiis

theaverageincomeingroupi,and卩istheaverageincomeacrosstheentirepopulation.

T'gisboundedabovebyln(P/pi(min)),thenaturallogarithmofthetotalpopulationgi

dividedbythesizeofthesmallestgroup.Thisvalueisattainedwhenthesmallestgroupholdsalltheresource.Whendataishierarchicallynested(i.e.everymunicipalityisinaprovinceandeachprovinceisinacountry)Theil'sTstatisticmustincreaseorstaythesameasthelevelofaggregationbecomessmaller(i.e.T’.>T'.>T',、n

populationg(district)g(county)

T'g(region)).Theil'sTstatisticforthepopulationequalsthelimitofthebetweengroupTheilcomponentasthenumberofgroupsapproachesthesizeofthepopulation.

BecausethecentralpurposeofthisdocumentistoshowhowtouseTheil'sTstatistic,theexamplesrelatingtoitsusewillbealittlemoreinvolved.

Example1:ConstructTheil'sTstatisticforUniversalWidgetandWorldwideWidgetwiththedataasgiven.

First,considerUniversalWidget.TofollowalonginExcel,openthespreadsheet“ExampleProblemswithTheil'sTStatistic”andselecttheworksheet“TheilExample1A”.Sinceindividualleveldataisavailable,Equation1isrelevant.Thefirststepistosumthenumberofemployeesandthetotalpayrollandtodividetotalpayrollbythenumberofemployeestogettheaveragesalary.Next,computethesalary/averagesalaryquotientforeachsalarylevel.Then,takethenaturallogarithmofthesamequotient.Anindividual's“Theilelement”isthecontributionthatheorshemakestoTheil'sTstatistic.Thisvalueiscomputedas[1/n]*[salary/averagesalary]*[ln(salary/averagesalary)].AftercomputingtheTheilelementsforeachjobposition,multiplybythenumberofemployeesintheposition.AddingupthesevaluesyieldstheTheilIndex,whichinthecaseofUniversalWidgetis0.28615395.

TocomputeTheil'sTstatisticforWorldwideWidget,followtheexactsamestepsasinPartA.ThecomputationscanbefoundintheExcelspreadsheet“Example

ProblemswithTheil'sTStatistic”undertheworksheet“TheilExampleIB”.Theresult

isaTheil'sTStatisticvalueof0.463162658.

Analysis:ComputingvaluesforTheil'sTstatisticisarelativelysimpleprocessofpluggingvaluesintoaformula.Therealconcernistomakesomeconclusionaboutinequality.IsitpossibletoconcludethatWorldwideWidgethasamoreunequalsalarystructurethanUniversalWidgetbecauseWorldwidehasahighervalueofTheil'sTstatistic?Notnecessarily.Asdiscussedabove,withindividualdata,thevalueofTheil'sTstatisticisboundedbyln(n),sowhileUniversalWidgethasanupperboundofln(400)=5.991464547,WorldwideWidgethasanupperboundln(1300)=7.170119543.BecauseWorldwideWidgethasmoreemployees,ceterisparibusitwillhaveagreatervalueofTheil'sTstatistic(infactifthecompanieshadidenticalTheil'sTstatisticvalues,onecouldconcludethatthelargercompanyhadlessinequality).Generallyspeaking,valuesofTheil'sTstatisticneedacontexttomakesense.Giventhatlastyear'sTheil'sTstatisticforsalariesatUniversalWidgetwas.1000,theTheil'sTstatisticforsalariesatWorldwideWidgetwas.5000,andbothcompanieshadworkforcesofsimilarsizetotheircurrentlevels,onecouldconcludethatsalaryinequalityincreasedatUniversalanddecreasedatWorldwideoverthelastyear.Knowingonlythisyear'sinformationandthatthetwocompanieshavesignificantlydifferentsizedworkforces,itisdifficulttomakemanysubstantiveconclusions.Ifonlyoneyear'sworthofdataisavailable,thenanotherinequalitymeasure,suchastheGinicoefficientorcoefficientofvariationmaybemoreappropriate.

Example2:WhatistheinterpretationofTheil'sTstatisticifthesalaryschedulesgivenrepresenttheaveragesalaryacrosspositions,nottheexactsalaries?

Inotherwords,forUniversalWidget,the7membersoftheCustodialStaffhaveanaveragesalaryof$18,000peryear,butthismayfluctuateamongindividuals.

Analysis:LookingatEquation2,Theil'sTstatisticiscomposedofabetweengrouppartandwithingrouppart.Undertheassumptionsofthisproblemstatement,thereisnowaytocomputethewithingroupcomponent,becausethereisnoknowledgeofindividualsalaries,onlyaveragesalaries.However,itispossibletocomputethebetweengroupcomponentandnotethatthisisthelowerboundfortotalinequality.Forthistask,thepropermathematicalrelationisEquation3,whichbynoaccidentbearsastrikingresemblancetoEquation1.Becausethesalaryfiguresarethesame,thenumericalvaluesofTheil'sTstatisticdonotchangeforeithercompany,buttheinterpretationdoes.Now0.28615395representsthebetweengroupcomponentofTheil'sTstatisticforUniversalWidgetandthelowerboundoftotalinequality.Thespreadsheetanalysisforboth

UniversalandWorldwidecanbefoundintheExcelSpreadsheet“ExampleProblemswithTheil'sTStatistic”undertheworksheets“TheilExample2A”and“TheilExample2B.”Noticehowthecolumnheadingschange,whichchangestheunderlyinginterpretationofthecalculations.

Example3:

Considerthefollowingdata:

UniveralWidgetSalarySchedule

JobType

Experience

#ofEmployeesinPosition

ExactAnnualSalary

CustodialStaff

Entry

2

$16,000.00

Mid

3

$18,000.00

Senior

2

$20,000.00

OfficeStaff

Entry

2

$18,000.00

Mid

6

$22,000.00

Senior

2

$26,000.00

EquipmentOperators

Entry

70

$20,000.00

Mid

140

$25,000.00

Senior

70

$30,000.00

EquipmentTechnicians

Entry

5

$29,000.00

Mid

5

$35,000.00

Senior

5

$41,000.00

Foremen

Entry

2

$25,000.00

Mid

10

$40,000.00

Senior

3

$50,000.00

Salespersons

Entry

10

$47,000.00

Mid

30

$60,000.00

Senior

10

$73,000.00

Engineers

Entry

3

$70,000.00

Mid

4

$75,000.00

Senior

3

$80,000.00

Managers

Entry

2

$60,000.00

Mid

2

$80,000.00

Senior

2

$100,000.00

VicePresidents

Entry

1

$100,000.00

Mid

2

$120,000.00

Senior

1

$140,000.00

SeniorVicePresidents

Entry

1

$160,000.00

Mid

1

$240,000.00

CEO

Senior

1

$1,000,000.00

Unlikeexamples1Aand1B,employeesdrawdifferentsalariesbasedonboththeirlevelofseniority(entry,mid,senior)andtheirjobposition.Example3resumestheassumptionfromthefirstexamplethatthedatarepresentsexactsalaryinformationforeachindividual.

Giventhisnewdata,whatistheTheilIndexforUniversalWidget?

Answer:Thereareseveralwaystodothisproblem,andfoursolutionsareworkedoutinthespreadsheet.Thefirstsolution(TheilExample3A)startsbycomputingthewithin-groupinequalityforeachjobposition(custodialstaff,engineers,etc.).ATheilcomponentiscomputedforeachexperiencelevelwithineachjobposition,thesummationofwhichgiveswithingroupinequality.However,beforeconcludinghowmuchthejobpositioninequalitycontributestototalcompany-wideinequality,wemustre-weightbytheproportionofsalarieswithinthejobposition.(Inotherwords,inequalitywithintheequipmentoperatorgrouptakesongreaterweightthanamongthecustodialstaff,because70%ofworkersoperateequipmentwhilelessthan2%performcustodialservices.)ComputingtheTheilIndexinthismannerhelpsustoparsetotalinequalityintowithin-groupandbetween-groupcomponents.ThetotalvalueoftheTheilIndexisnow0.12860521,ofwhich0.124275081isbetween-groupinequalityand0.004330129.Thesubstantivelessonhereisthatthedifferenceinaveragesalariesbetweenjobpositionscausesthevastmajorityoftheinequality,andthedifferencesamongsenioritylevelswithinjobpositionscontributeverylittletototalinequality.

TheilExample3Bcalculatestotalinequalitybycomparingeachjobpositionexperiencelevelcombinationtotheaveragesalary.ThevalueofthetotalTheilIndexisthesame,butthismethoddoesnotnaturallyparsetheIndexintowithin-groupand

between-groupportions.Fullenumeration-TheilExample3Cmakeseachemployeeaseparaterecord,which,ye

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論