版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
TheTheoreticalBasicsofPopularInequalityMeasures
TravisHale,UniversityofTexasInequalityProject
Thisdocumentexploresseveralinequalitymeasuresusedbroadlyintheliterature,withaspecialemphasisonhowtocomputeTheil'sTstatistic.Inequalityisrelatedtoseveralmathematicalconcepts,includingdispersion,skewness,andvariance.Asaresult,therearemanywaystomeasureinequality,whichitselfarisesfromvarioussocialandphysicalphenomena.Whilethisisnotanexhaustivediscussionofinequalitymeasures,itdoesdealwithseveralofthemostpopularstatistics.Severalexamplesareincludedthatpertaintoinequalityofsalarieswithintwofictionalcompanies—UniversalWidgetandWorldwideWidget—butalloftheinequalitymeasuresdiscussedapplytoabroadsetofresearchquestions.Thesalaryschedulesfortheexampleproblemsarebelow,followedbydiscussionsofrange,rangeratios,theMcLooneIndex,thecoefficientofvariation,andtheGiniCoefficient.FollowingthesebriefintroductionsisanextendeddescriptionofTheil'sTstatistic.
UniversalWidgetSalarySchedule
Position
#ofEmployeesinPosition
ExactAnnualSalary
CustodialStaff
7
$18,000.00
OfficeStaff
10
$22,000.00
EquipmentOperators
280
$25,000.00
EquipmentTechnicians
15
$35,000.00
Foremen
15
$40,000.00
Salespersons
50
$60,000.00
Engineers
10
$75,000.00
Managers
6
$80,000.00
VicePresidents
4
$120,000.00
SeniorVicePresidents
2
$200,000.00
CEO
1
$1,000,000.00
WorldwideWidgetSalarySchedule
Position
#ofEmployeesinPosition
ExactAnnualSalary
CustodialStaff
12
$15,000.00
OfficeStaff
25
$20,000.00
EquipmentOperators
1000
$30,000.00
EquipmentTechnicians
35
$35,000.00
Foremen
100
$45,000.00
Salespersons
80
$50,000.00
Managers
10
$60,000.00
Engineers
25
$80,000.00
VicePresidents
8
$175,000.00
SeniorVicePresidents
4
$250,000.00
CEO
1
$5,000,000.00
Range
Perhapsthesimplestmeasureofdispersion,therangemerelycalculatesthedifferencebetweenthehighestandlowestobservationsofaparticularvariableofinterest.Strengthsoftherangeincludeitsmathematicalsimplicityandeaseofunderstanding.However,itisaverylimitedmeasure.Therangeonlyusestwoobservationsfromtheoverallset,itdoesnotweightobservationsbyimportantunderlyingcharacteristics(likethepopulationofastate,theexperienceofanemployee,etc.),anditissensitivetoinflationarypressures.Inthecaseofacompany,therangebetweenthesalariesofthehighestandlowestpaidemployeesmaynotgivemuchinformation.ForUniversalWidget,therangeinsalariesis$982,000($1,000,000-$18,000),whileforWorldwideWidgettherangeis$4,985,000($5,000,000-$15,000).DoesthismeanthatWorldwideWidgethasamuchmoreunequalwagestructurethanUniversalWidget?Notwithoutfurtherevidence.
RangeRatios
Tofindtherangeratioforacertainvariable,dividethevalueatacertainpercentile(usuallyabovethemedian)bythevalueatalowerpercentile(usuallybelowthemedian).OnerangeratiooftenusedinthestudyofinequalityineducationalexpendituresistheFederalRangeRatio,whichdividesthedifferencebetweentherevenueforthestudentatthe95thpercentileandthe5thpercentilebytherevenueforthestudentatthe95thpercentile.1Anotherpopularrangeratioistheinter-quartilerangeratio.Subtractingtheobservationatthe25thpercentilebytheobservationatthe75thpercentileresultsinaquantityknownastheinter-quartilerange,anddividingtheobservationatthe75thpercentilebythe25thpercentilecalculatestheinter-quartilerangeratio.Rangeratioscanmeasureallsortsofinequalitiesandthepercentilescanbeconstructedinanymanner.Arangeratiocantakeonanyvaluebetweenoneandinfinity,andsmallervaluesreflectlowerinequality.
Usingtheexampledata,onecancomputea90:10rangeratioforthetwowidgetcompanies.ForUniversalWidget,the90thpercentilefallsatasalaryof$60,000andthe10thpercentileis$25,000.Thus,the90:10rangeratiois$60,000/$25,000or2.4.ForWorldwideWidget,the90thpercentilefallsatasalaryof$35,000andthe10thpercentileis$30,000.Therefore,the90:10rangeratiois$35,000/$30,000or1.17.Giventhisinformation,WorldwideWidgethasamoreequalpaystructure,theoppositeconclusiongleanedfromtherange.
Rangeratiosareeasytounderstandandsimpletocompute.Theycandirectlycomparesthe“haves”-observationsatthe90thpercentileorelsewhereabovethemedianvalue-withthe“have-nots”-observationsatthe10thpercentileorelsewherebelowthemedian,withoutbeingsensitivetooutliersattheverytoporverybottomofthedistribution.However,liketherange,rangeratiosonlylookattwodistinctdatapoints,throwingawaythegreatmajorityofthedata.Becauseofthissignificantlimitation,researchersoftenemploymoresophisticatedinequalitymeasures.
McLooneIndex
TheMcLooneIndexisanotherexampleofameasurethatcomparesonepartofadistributiontoanother.However,theMcLooneIndextakesamuchlargerproportionofthedataintoaccount.Itcompareshowmuchofaresourceisconcentratedinthebottomhalfofadistributiontothemedianamount.TocomputetheMcLooneIndexvalue,dividethesumofalloftheobservationsatorbelowthemedianlevelbytheproductofthenumberofobservationsatorbelowthemedianlevelandthevalueofthemedianlevel.ValuesoftheMcLooneIndexareboundbelowbyzero-ifthelowerhalfofthedistributionreceivesnoneoftheresource-andabovebyone-iftherearenoobservationsbelowthemedian.Thelattercasewouldoccurifthelowestvalueissharedbyatleasthalfoftheobservations.Unlikemostinequalitymeasures,ahighervaluefortheMcLooneIndexdescribesamoreequitabledistribution.
Forexample,theUniversalWidgetCompanyhas400employees.Themediansalaryvalueisapproximatelythatofthe200thleastcompensatedemployee.ThatemployeeisanEquipmentOperatorwhomakes$25,000.TheMcLooneIndexistheratiooftheactualsalariesoftheleastpaidhalfoftheUniversalWidgetworkforcetothecounterfactualdenominatorof$25,000*200=5,000,000.ThustheMcLooneIndexforUniversalWidgetequals(7*18,000+10*22,000+183*25,000)/5,000,000or.9842.ParallelcomputationsrevealthatWorldwideWidgethasaMcLooneIndexvalueof.9595.ThisleadstoaconclusionthatUniversalhasamoreequalpaystructure.
TheMcLooneIndexisrelativelyeasytounderstand,andmightbeanappropriatemeasureifresearchersareprimarilyinterestedinthebottomofadistribution.Ifthemedianobservationreflectsan“adequatee”nthlevMeclL,otohneIndexgivessomesenseofhowthebottomhalfofthedistributionisdoingcomparedthemiddle.However,theMcLooneIndexhassomepotentiallyobjectionableproperties.First,itdoesnotuseallinformation,throwingawaytheobservationsabovethemedian.Certainlythereisasubstantialdifferencebetweenadistributionwherethehighervaluesliejustabovethemedianandonewheresomeobservationsliefarbeyondthemedian.TheMcLooneIndexcomparesrealitywithacounterfactualmodel,sotheresearchermaybeaskedtojustifythecomparisonofrealitytoanalternativewheretheentirebottomhalfofthedistributionsharesthemedianvalue.WhiletheMcLooneIndexhasthusfarbeenconcernedprimarilywithschoolfinanceinequalitymeasurement,therearesimilarmeasureswithbroaderapplication,andthereisnoreasonthattheMcLooneIndexitselfcouldnotbeappliedtootherphenomena.
TheCoefficientofVariation
Thecoefficientofvariationissimplythestandarddeviationofavariabledividedbythemean.2Graphically,thecoefficientofvariationdescribesthepeakednessofaunimodalfrequencydistribution.Foradatasetthatiscloselybunchedaroundthemean,thepeakwillbehigh,andthecoefficientofvariationsmall.Datathatismoredispersedwillhaveashorterpeakandahighercoefficientofvariation.Ceterisparibus,thesmallerthecoefficientofvariation,themoreequitablethedistribution.
Thefirststepincomputingcoefficientsofvariationforthesampledataistofindthemeanandstandarddeviationofeachset.Thisisfairlyeasytodowithstatisticssoftware,oraspreadsheetprogramsuchasMicrosoftExcel.UniversalWidgethasanaveragesalaryof$36,452.50andastandarddeviationof52,630.52.WorldwideWidgethasanaveragesalaryof$38,773.08andastandarddeviationof138,990.96.Thisleadstocoefficientsofvariationof1.44and3.58forUniversalandWorldwide,respectively,concludingthatUniversalhasthemoreequitablesalarystructure.
Thecoefficientofvariationhassomeattractiveproperties.Ifgroupdataisused,butweightedbypopulationsize,smalloutlyingobservationsdonotskewthedistributiongreatly.Individualswithevenalimitedstatisticalbackgroundarelikelytobefamiliarwiththestandarddeviationandsamplemean,makingthecoefficientofvariationeasytoexplaintoanon-technicalaudience.Furthermore,byconstruction,inflationdoesnotaffectthecoefficientofvariation.Adisadvantageofthemeasureisthat,theoretically,thecoefficientofvariationcantakeanyvaluebetweenzeroandinfinity,andthereisnouniversalstandardthatdefinesareasonablevalueofthemeasureforparticularphenomena.
TheGiniCoefficient
TheGinicoefficientderivesfromtheLorenzCurve.ToplotaLorenzcurve,ranktheobservationsfromlowesttohighestonthevariableofinterest,andthenplotthecumulativeproportionofthepopulationontheX-axisandthecumulativeproportionofthevariableofinterestontheY-axis.3TheGinicoefficientcomparesthiscumulativefrequencyandsizecurvetotheuniformdistributionthatrepresentsequality.Inthegraphicaldepictionbelow,adiagonallinerepresentsperfectequality,andthegreaterthedeviationoftheLorenzcurvefromthisline,thegreatertheinequality.TheGinicoefficientisdoubletheareabetweentheequalitydiagonalandtheLorenzcurve,boundedbelowbyzero(perfectequality)andabovebyone(thecasewhenasinglememberofthepopulationholdsallofaresource).
GraphicalRepresentaionoftheGiniCoefficient
1.2-i
■1
00.81
CumulativeProportionofPopulation
4>-q?」E>'5u.2'todo4>>4E-nluno
ThereareseveralwaystocomputetheGinicoefficientforadataset.ResearcherswhoarecomfortablewithCalculusandspreadsheetanalysisandhavealargeamountofdatathatresultsinsmoothplotscanestimateahighorderpolynomialfortheLorenzCurve(MicrosoftExcelwilladduptoa6thdegreepolynomialasatrendlineforanXYgraph),andthentakeanappropriateintegraltocomputethesizeoftheshadedarea.Likewise,otherestimationtechniques,suchasthemethodofrectangles,themethodoftrapezoids,orMonteCarlointegrationwillprovidereasonableestimates.Anotherwayto
computetheGiniisdirectlyfromanalgebraicformula.Giventhatthedataisorderedfromsmallesttolargestvaluesofthevariableofinterest,theformulais:
蘭(2i-n一1)x'
whereiistheindividual'srankordernumber,nisthe
G=
n2卩
numberoftotalindividuals,x'.istheindividual'svariablevalue,and卩isthepopulationaverage.4
TocomputetheGinicoefficientsforthesampledata,itiseasiesttoorganizethedatasuchthateachindividualisgivenhisorherownrecord(suchthatthesalaryscheduleforUniversalWidgethas400rows,oneforeachemployee).Aftersplittingthedatainthismanner,itisfairlystraightforwardtoapplytheformulaabove.ForUniversalWidget,theGinicoefficientis0.279625369,whileforWorldwideWidget,theGinicoefficientis0.227509252.
TheGinicoefficientisafull-informationmeasure,lookingatallpartsofthedistribution.Itisprobablythemostwell-knownandbroadlyusedmeasureofinequalityusedineconomicliterature.TheGinicoefficientfacilitatesdirectcomparisonoftwopopulations,regardlessoftheirsizes.Inotherwords,withtheGinicoefficientonecandirectlycomparetheinequalityinaclassroomtotheinequalityinacountry.WhiletheactualcomputationoftheGinicoefficientmayincludetakinganintegralorusingaslightlycomplexformula,thevisualdescriptioniselegantandeasytounderstand.TheGinicoefficientdoessufferfromthelackofatruezero,andtheneedforacontext.Whileadistributionalpolicy,likegivingeveryonebelowthepovertyline$1,000,hasrealimplications,therepercussionsofa5%reductionoftheGinicoefficientaremuchlessclear.
Theil'sTStatistic
Theinequalitymeasuresdiscussedaboveareeachappropriateincertaincircumstances.TherationaleforpreferringTheil'sTstatisticisnotthatthereissomeinherentflawintheothermeasures,butthatTheil'sThasamoreflexiblestructurethatoftenmakesitmoreappropriate.Ifaresearcheralwayshadaccesstocomplete,individualleveldataforthepopulationofinterest,thenmeasureslikethecoefficientofvariationortheGinicoefficientwouldusuallybesufficientfordescribinginequality.However,inpractice,individualdataisrarelyavailable,andresearchersareaskedtomakeduewithaggregateddata.Returningtotheexampleproblemillustratesthepoint.WhatiftheUniversalWidgetsalaryscheduledidnotreflecttheexactsalaryforeachemployeebuttheaveragesalaryovereachjobcategory?ItwouldbepossibletocomputevaluesforthecoefficientofvariationortheGinicoefficientundertheassumptionthateachemployeereceivesexactlytheaveragesalary,buttheresultswouldonlygiveanupperorlowerboundofeachinequalitymeasure,becausevariancewithineachjobcategorywillcontributetototalinequality.Formostpracticaldata,datathathassomedegreeofaggregationoranunderlyinghierarchy(e.g.citieswithinregionswithinnations),Theil'sTstatisticisoftenamoreappropriateandtheoreticallysoundtool.5
ThefollowingformulaegivethealgebrabehindTheil'sTstatistic.Whiletheseparticularequationsuseincomeasthevariableofinterest,Theil'sTcanaddressanynumberofquantifiablephenomena.Whenhouseholddataisavailable,Theil'sTstatistic
is6:
n
=x<
*
(、
*ln
(、
p=1
ln丿
冷yJ
冷y丿
[1]
wherenisthenumberofindividualsinthepopulation,ypistheincomeofthepersonindexedbyp,and巴isthepopulation'saverageincome.Ifeveryindividualhasexactlythesameincome,Twillbezero;thisrepresentsperfectequalityandistheminimumvalueofTheil'sT.Ifoneindividualhasalloftheincome,Twillequallnn;thisrepresentsutmostinequalityandisthemaximumvalueofTheil'sTstatistic.
Ifmembersofapopulationcanbeclassifiedintomutuallyexclusiveandcompletelyexhaustivegroups,thenTheil'sTstatisticismadeupoftwocomponents,thebetweengroupelement(T'g)andthewithingroupelement(Twg).
gg
[2]T=T'g+Twg
Whenaggregateddataisavailableinsteadofindividualdata,T'gcanbeusedasalowerboundforthepopulation'svalueofTheil'sTstatistic.ThebetweengroupelementofTheil'sTcanbewrittenas:
[3]
i=1
顯丿J
whereiindexesthegroups,piisthepopulationofgroupi,Pisthetotalpopulation,yiis
theaverageincomeingroupi,and卩istheaverageincomeacrosstheentirepopulation.
T'gisboundedabovebyln(P/pi(min)),thenaturallogarithmofthetotalpopulationgi
dividedbythesizeofthesmallestgroup.Thisvalueisattainedwhenthesmallestgroupholdsalltheresource.Whendataishierarchicallynested(i.e.everymunicipalityisinaprovinceandeachprovinceisinacountry)Theil'sTstatisticmustincreaseorstaythesameasthelevelofaggregationbecomessmaller(i.e.T’.>T'.>T',、n
populationg(district)g(county)
T'g(region)).Theil'sTstatisticforthepopulationequalsthelimitofthebetweengroupTheilcomponentasthenumberofgroupsapproachesthesizeofthepopulation.
BecausethecentralpurposeofthisdocumentistoshowhowtouseTheil'sTstatistic,theexamplesrelatingtoitsusewillbealittlemoreinvolved.
Example1:ConstructTheil'sTstatisticforUniversalWidgetandWorldwideWidgetwiththedataasgiven.
First,considerUniversalWidget.TofollowalonginExcel,openthespreadsheet“ExampleProblemswithTheil'sTStatistic”andselecttheworksheet“TheilExample1A”.Sinceindividualleveldataisavailable,Equation1isrelevant.Thefirststepistosumthenumberofemployeesandthetotalpayrollandtodividetotalpayrollbythenumberofemployeestogettheaveragesalary.Next,computethesalary/averagesalaryquotientforeachsalarylevel.Then,takethenaturallogarithmofthesamequotient.Anindividual's“Theilelement”isthecontributionthatheorshemakestoTheil'sTstatistic.Thisvalueiscomputedas[1/n]*[salary/averagesalary]*[ln(salary/averagesalary)].AftercomputingtheTheilelementsforeachjobposition,multiplybythenumberofemployeesintheposition.AddingupthesevaluesyieldstheTheilIndex,whichinthecaseofUniversalWidgetis0.28615395.
TocomputeTheil'sTstatisticforWorldwideWidget,followtheexactsamestepsasinPartA.ThecomputationscanbefoundintheExcelspreadsheet“Example
ProblemswithTheil'sTStatistic”undertheworksheet“TheilExampleIB”.Theresult
isaTheil'sTStatisticvalueof0.463162658.
Analysis:ComputingvaluesforTheil'sTstatisticisarelativelysimpleprocessofpluggingvaluesintoaformula.Therealconcernistomakesomeconclusionaboutinequality.IsitpossibletoconcludethatWorldwideWidgethasamoreunequalsalarystructurethanUniversalWidgetbecauseWorldwidehasahighervalueofTheil'sTstatistic?Notnecessarily.Asdiscussedabove,withindividualdata,thevalueofTheil'sTstatisticisboundedbyln(n),sowhileUniversalWidgethasanupperboundofln(400)=5.991464547,WorldwideWidgethasanupperboundln(1300)=7.170119543.BecauseWorldwideWidgethasmoreemployees,ceterisparibusitwillhaveagreatervalueofTheil'sTstatistic(infactifthecompanieshadidenticalTheil'sTstatisticvalues,onecouldconcludethatthelargercompanyhadlessinequality).Generallyspeaking,valuesofTheil'sTstatisticneedacontexttomakesense.Giventhatlastyear'sTheil'sTstatisticforsalariesatUniversalWidgetwas.1000,theTheil'sTstatisticforsalariesatWorldwideWidgetwas.5000,andbothcompanieshadworkforcesofsimilarsizetotheircurrentlevels,onecouldconcludethatsalaryinequalityincreasedatUniversalanddecreasedatWorldwideoverthelastyear.Knowingonlythisyear'sinformationandthatthetwocompanieshavesignificantlydifferentsizedworkforces,itisdifficulttomakemanysubstantiveconclusions.Ifonlyoneyear'sworthofdataisavailable,thenanotherinequalitymeasure,suchastheGinicoefficientorcoefficientofvariationmaybemoreappropriate.
Example2:WhatistheinterpretationofTheil'sTstatisticifthesalaryschedulesgivenrepresenttheaveragesalaryacrosspositions,nottheexactsalaries?
Inotherwords,forUniversalWidget,the7membersoftheCustodialStaffhaveanaveragesalaryof$18,000peryear,butthismayfluctuateamongindividuals.
Analysis:LookingatEquation2,Theil'sTstatisticiscomposedofabetweengrouppartandwithingrouppart.Undertheassumptionsofthisproblemstatement,thereisnowaytocomputethewithingroupcomponent,becausethereisnoknowledgeofindividualsalaries,onlyaveragesalaries.However,itispossibletocomputethebetweengroupcomponentandnotethatthisisthelowerboundfortotalinequality.Forthistask,thepropermathematicalrelationisEquation3,whichbynoaccidentbearsastrikingresemblancetoEquation1.Becausethesalaryfiguresarethesame,thenumericalvaluesofTheil'sTstatisticdonotchangeforeithercompany,buttheinterpretationdoes.Now0.28615395representsthebetweengroupcomponentofTheil'sTstatisticforUniversalWidgetandthelowerboundoftotalinequality.Thespreadsheetanalysisforboth
UniversalandWorldwidecanbefoundintheExcelSpreadsheet“ExampleProblemswithTheil'sTStatistic”undertheworksheets“TheilExample2A”and“TheilExample2B.”Noticehowthecolumnheadingschange,whichchangestheunderlyinginterpretationofthecalculations.
Example3:
Considerthefollowingdata:
UniveralWidgetSalarySchedule
JobType
Experience
#ofEmployeesinPosition
ExactAnnualSalary
CustodialStaff
Entry
2
$16,000.00
Mid
3
$18,000.00
Senior
2
$20,000.00
OfficeStaff
Entry
2
$18,000.00
Mid
6
$22,000.00
Senior
2
$26,000.00
EquipmentOperators
Entry
70
$20,000.00
Mid
140
$25,000.00
Senior
70
$30,000.00
EquipmentTechnicians
Entry
5
$29,000.00
Mid
5
$35,000.00
Senior
5
$41,000.00
Foremen
Entry
2
$25,000.00
Mid
10
$40,000.00
Senior
3
$50,000.00
Salespersons
Entry
10
$47,000.00
Mid
30
$60,000.00
Senior
10
$73,000.00
Engineers
Entry
3
$70,000.00
Mid
4
$75,000.00
Senior
3
$80,000.00
Managers
Entry
2
$60,000.00
Mid
2
$80,000.00
Senior
2
$100,000.00
VicePresidents
Entry
1
$100,000.00
Mid
2
$120,000.00
Senior
1
$140,000.00
SeniorVicePresidents
Entry
1
$160,000.00
Mid
1
$240,000.00
CEO
Senior
1
$1,000,000.00
Unlikeexamples1Aand1B,employeesdrawdifferentsalariesbasedonboththeirlevelofseniority(entry,mid,senior)andtheirjobposition.Example3resumestheassumptionfromthefirstexamplethatthedatarepresentsexactsalaryinformationforeachindividual.
Giventhisnewdata,whatistheTheilIndexforUniversalWidget?
Answer:Thereareseveralwaystodothisproblem,andfoursolutionsareworkedoutinthespreadsheet.Thefirstsolution(TheilExample3A)startsbycomputingthewithin-groupinequalityforeachjobposition(custodialstaff,engineers,etc.).ATheilcomponentiscomputedforeachexperiencelevelwithineachjobposition,thesummationofwhichgiveswithingroupinequality.However,beforeconcludinghowmuchthejobpositioninequalitycontributestototalcompany-wideinequality,wemustre-weightbytheproportionofsalarieswithinthejobposition.(Inotherwords,inequalitywithintheequipmentoperatorgrouptakesongreaterweightthanamongthecustodialstaff,because70%ofworkersoperateequipmentwhilelessthan2%performcustodialservices.)ComputingtheTheilIndexinthismannerhelpsustoparsetotalinequalityintowithin-groupandbetween-groupcomponents.ThetotalvalueoftheTheilIndexisnow0.12860521,ofwhich0.124275081isbetween-groupinequalityand0.004330129.Thesubstantivelessonhereisthatthedifferenceinaveragesalariesbetweenjobpositionscausesthevastmajorityoftheinequality,andthedifferencesamongsenioritylevelswithinjobpositionscontributeverylittletototalinequality.
TheilExample3Bcalculatestotalinequalitybycomparingeachjobpositionexperiencelevelcombinationtotheaveragesalary.ThevalueofthetotalTheilIndexisthesame,butthismethoddoesnotnaturallyparsetheIndexintowithin-groupand
between-groupportions.Fullenumeration-TheilExample3Cmakeseachemployeeaseparaterecord,which,ye
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年新式貨物運輸合作協(xié)議
- 2024年度信息安全評估與防護合同
- 2024年房屋按揭借款合同
- 2024年拱門空飄設備安裝工程合同
- 2024年數(shù)字版權保護與授權分發(fā)合同
- 二十年后作文5篇2
- 2024醫(yī)院信息系統(tǒng)建設合同
- 工匠精神演講稿提綱(范文15篇)
- 第14題常見有機物的結構和性質-2023年7月浙江省普通高中學業(yè)水平考試化學分題(原卷版)
- 2024年房產(chǎn)交易新篇章:住宅買賣條款
- 健身指導知識考試題庫及答案(500題)
- YMO青少年數(shù)學思維26屆1-6年級全國總決賽試卷
- 簡筆畫(高職學前教育專業(yè))全套教學課件
- 4.2.1電解池高二化學課件(人教版2019選擇性必修1)
- (完整)大體積混凝土測溫記錄表
- 單人徒手心肺復蘇操作評分表(醫(yī)院考核標準版)
- 教育數(shù)字化背景下的創(chuàng)新教學方法及效果評估研究
- 第五章班級活動的設計-與實施
- 小學語文-示兒教學設計學情分析教材分析課后反思
- 《初二班會課件:班級管理與自我管理》
- 食材配送服務方案(技術方案)
評論
0/150
提交評論