版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆安徽省桐城實驗中學數(shù)學九年級第一學期期末復(fù)習檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.下圖是用來證明勾股定理的圖案被稱為“趙爽弦圖”,由四個全等的直角三角形和一個小正方形拼成的大正方形,對其對稱性表述,正確的是()A.軸對稱圖形 B.中心對稱圖形C.既是軸對稱圖形又是中心對稱圖形 D.既不是軸對稱圖形又不是中心對稱圖形2.在Rt△ABC中,∠C=90°,AB=5,BC=3,則tanA的值是()A. B. C. D.3.九(1)班的教室里正在召開50人的座談會,其中有3名教師,12名家長,35名學生,當林校長走到教室門口時,聽到里面有人在發(fā)言,那么發(fā)言人是家長的概率為()A. B. C. D.4.下列方程沒有實數(shù)根的是()A.x2﹣x﹣1=0 B.x2﹣6x+5=0 C.x2﹣2x+3=0 D.x2+x+1=05.若一個圓錐的主視圖是腰長為5,底邊長為6的等腰三角形,則該圓錐的側(cè)面積是()A.15π B.20π C.24π D.30π6.如圖1,一個扇形紙片的圓心角為90°,半徑為1.如圖2,將這張扇形紙片折疊,使點A與點O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為()A. B. C. D.7.的半徑為5,圓心O到直線l的距離為3,則直線l與的位置關(guān)系是A.相交 B.相切 C.相離 D.無法確定8.如圖,在平行四邊形ABCD中,點E在邊DC上,DE:EC=3:1,連接AE交BD于點F,則△DEF的面積與△BAF的面積之比為()A.3:4 B.9:16 C.9:1 D.3:19.若點,,在反比例函數(shù)的圖像上,則的大小關(guān)系是()A. B. C. D.10.如圖,在△OAB中,頂點O(0,0),A(﹣3,4),B(3,4),將△OAB與正方形ABCD組成的圖形繞點O逆時針旋轉(zhuǎn),每次旋轉(zhuǎn)90°,則第2019次旋轉(zhuǎn)結(jié)束時,點D的坐標為()A.(3,﹣10) B.(10,3) C.(﹣10,﹣3) D.(10,﹣3)11.如圖(1)所示,為矩形的邊上一點,動點,同時從點出發(fā),點沿折線運動到點時停止,點沿運動到點時停止,它們運動的速度都是秒,設(shè)、同時出發(fā)秒時,的面積為.已知與的函數(shù)關(guān)系圖象如圖(2)(曲線為拋物線的一部分)則下列結(jié)論正確的是()圖(1)圖(2)A. B.當是等邊三角形時,秒C.當時,秒 D.當?shù)拿娣e為時,的值是或秒12.方程的解是().A.x1=x2=0 B.x1=x2=1 C.x1=0,x2=1 D.x1=0,x2=-1二、填空題(每題4分,共24分)13.如圖,Rt△ABC中,∠A=90°,CD平分∠ACB交AB于點D,O是BC上一點,經(jīng)過C、D兩點的⊙O分別交AC、BC于點E、F,AD=,∠ADC=60°,則劣弧的長為_____.14.如圖,是⊙O的直徑,弦,垂足為E,如果,那么線段OE的長為__________.15.若點與關(guān)于原點對稱,則的值是___________.16.若二次函數(shù)的圖象與x軸只有一個公共點,則實數(shù)n=______.17.一個扇形的弧長是,它的面積是,這個扇形的圓心角度數(shù)是_____.18.如圖,為半圓的直徑,點、、是半圓弧上的三個點,且,,若,,連接交于點,則的長是______.三、解答題(共78分)19.(8分)某公司經(jīng)銷一種成本為10元的產(chǎn)品,經(jīng)市場調(diào)查發(fā)現(xiàn),在一段時間內(nèi),銷售量(件)與銷售單價(元/件)的關(guān)系如下表:15202530550500450400設(shè)這種產(chǎn)品在這段時間內(nèi)的銷售利潤為(元),解答下列問題:(1)如是的一次函數(shù),求與的函數(shù)關(guān)系式;(2)求銷售利潤與銷售單價之間的函數(shù)關(guān)系式;(3)求當為何值時,的值最大?最大是多少?20.(8分)已知關(guān)于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分別為△ABC三邊的長.(1)如果x=﹣1是方程的根,試判斷△ABC的形狀,并說明理由;(2)如果方程有兩個相等的實數(shù)根,試判斷△ABC的形狀,并說明理由;(3)如果△ABC是等邊三角形,試求這個一元二次方程的根.21.(8分)如圖,已知均在上,請用無刻度的直尺作圖.如圖1,若點是的中點,試畫出的平分線;如圖2,若.試畫出的平分線.22.(10分)已知:如圖,在平行四邊形ABCD中,O為對角線BD的中點,過點O的直線EF分別交AD,BC于E,F(xiàn)兩點,連結(jié)BE,DF.(1)求證:△DOE≌△BOF.(2)當∠DOE等于多少度時,四邊形BFDE為菱形?請說明理由.23.(10分)體育文化公司為某學校捐贈甲、乙兩種品牌的體育器材,甲品牌有A、B、C三種型號,乙品牌有D、E兩種型號,現(xiàn)要從甲、乙兩種品牌的器材中各選購一種型號進行捐贈.
(1)下列事件是不可能事件的是.A.選購乙品牌的D型號B.既選購甲品牌也選購乙品牌C.選購甲品牌的A型號和乙品牌的D型號D.只選購甲品牌的A型號(2)寫出所有的選購方案(用列表法或樹狀圖);(3)如果在上述選購方案中,每種方案被選中的可能性相同,那么A型器材被選中的概率是多少?24.(10分)2018年高一新生開始,某省全面啟動高考綜合改革,實行“3+1+2”的高考選考方案.“3”是指語文、數(shù)學、外語三科必考;“1”是指從物理、歷史兩科中任選一科參加選考,“2”是指從政治、化學、地理、生物四科中任選兩科參加選考(1)“1+2”的選考方案共有多少種?請直接寫出所有可能的選法;(選法與順序無關(guān),例如:“物、政、化”與“物、化、政”屬于同一種選法)(2)高一學生小明和小杰將參加新高考,他們酷愛歷史和生物,兩人約定必選歷史和生物.他們還需要從政治、化學、地理三科中選一科參考,若這三科被選中的機會均等,請用列表或畫樹狀圖的方法,求出他們恰好都選中政治的概率.25.(12分)如圖,在矩形的邊上取一點,連接并延長和的延長線交于點,過點作的垂線與的延長線交于點,與交于點,連接.(1)當且時,求的長;(2)求證:;(3)連接,求證:.26.如圖是四個全等的小矩形組成的圖形,這些矩形的頂點稱為格點.△ABC是格點三角形(頂點是格點的三角形)(1)若每個小矩形的較短邊長為1,則BC=;(2)①在圖1、圖2中分別畫一個格點三角形(頂點是格點的三角形),使它們都與△ABC相似(但不全等),且圖1,2中所畫三角形也不全等).②在圖3中只用直尺(沒有刻度)畫出△ABC的重心M.(保留痕跡,點M用黑點表示,并注上字母M)
參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)軸對稱和中心對稱圖形的概念判斷即可.【題目詳解】“趙爽弦圖”是中心對稱圖形,但不是軸對稱圖形,故選:B.【題目點撥】本題主要考查軸對稱和中心對稱,會判斷軸對稱圖形和中心對稱圖形是解題的關(guān)鍵.2、A【解題分析】由勾股定理,得AC=,由正切函數(shù)的定義,得tanA=,故選A.3、B【解題分析】根據(jù)概率=頻數(shù)除以總數(shù)即可解題.【題目詳解】解:由題可知:發(fā)言人是家長的概率==,故選B.【題目點撥】本題考查了概率的實際應(yīng)用,屬于簡單題,熟悉概率的計算方法是解題關(guān)鍵.4、D【解題分析】首先根據(jù)題意判斷上述四個方程的根的情況,只要看根的判別式△=-4ac的值的符號即可.【題目詳解】解:A、∵△=b2﹣4ac=1+4=5>0,∴方程有兩個不相等的實數(shù)根,故本選項錯誤;B、∵△=b2﹣4ac=36﹣20=16>0,∴方程有兩個不相等的實數(shù)根,故本選項錯誤;C、∵△=b2﹣4ac=12﹣12=0,∴方程有兩個相等的實數(shù)根,故本選項錯誤;D、∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程沒有實數(shù)根,故本選項正確.故選:D.【題目點撥】本題考查根的判別式.一元二次方程的根與△=-4ac有如下關(guān)系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.5、A【解題分析】試題分析:∵圓錐的主視圖是腰長為5,底邊長為6的等腰三角形,∴這個圓錐的底面圓的半徑為3,母線長為5.∴這個圓錐的側(cè)面積=.故選A.考點:1.簡單幾何體的三視圖;2.圓錐的計算.6、C【解題分析】連接OD,根據(jù)勾股定理求出CD,根據(jù)直角三角形的性質(zhì)求出∠AOD,根據(jù)扇形面積公式、三角形面積公式計算,得到答案.【題目詳解】解:連接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD=∴∠COD=60°,∴陰影部分的面積=,故選:C.【題目點撥】本題考查的是扇形面積計算、勾股定理,掌握扇形面積公式是解題的關(guān)鍵.7、A【分析】根據(jù)直線和圓的位置關(guān)系可知,圓的半徑大于直線到圓距離,則直線l與O的位置關(guān)系是相交.【題目詳解】∵⊙O的半徑為5,圓心O到直線的距離為3,∴直線l與⊙O的位置關(guān)系是相交.故選A.【題目點撥】本題考查了直線和圓的位置關(guān)系,直接根據(jù)直線和圓的位置關(guān)系解答即可.8、B【分析】可證明△DFE∽△BFA,根據(jù)相似三角形的面積之比等于相似比的平方即可得出答案.【題目詳解】∵四邊形ABCD為平行四邊形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故選B.9、C【解題分析】根據(jù)點A、B、C分別在反比例函數(shù)上,可解得、、的值,然后通過比較大小即可解答.【題目詳解】解:將A、B、C的橫坐標代入反比函數(shù)上,得:y1=-6,y2=3,y3=2,所以,;故選C.【題目點撥】本題考查了反比例函數(shù)的計算,熟練掌握是解題的關(guān)鍵.10、C【分析】先求出AB=1,再利用正方形的性質(zhì)確定D(-3,10),由于2019=4×504+3,所以旋轉(zhuǎn)結(jié)束時,相當于△OAB與正方形ABCD組成的圖形繞點O順時針旋轉(zhuǎn)3次,由此求出點D坐標即可.【題目詳解】∵A(﹣3,4),B(3,4),∴AB=3+3=1.∵四邊形ABCD為正方形,∴AD=AB=1,∴D(﹣3,10).∵2019=4×504+3,∴每4次一個循環(huán),第2019次旋轉(zhuǎn)結(jié)束時,相當于△OAB與正方形ABCD組成的圖形繞點O順時針旋轉(zhuǎn)3次,每次旋轉(zhuǎn),剛好旋轉(zhuǎn)到如圖O的位置.∴點D的坐標為(﹣10,﹣3).故選:C.【題目點撥】本題考查了坐標與圖形變化-旋轉(zhuǎn):圖形或點旋轉(zhuǎn)之后要結(jié)合旋轉(zhuǎn)的角度和圖形的特殊性質(zhì)來求出旋轉(zhuǎn)后的點的坐標.常見的是旋轉(zhuǎn)特殊角度如:30°,45°,10°,90°,180°.11、D【分析】先根據(jù)圖象信息求出AB、BE、BE、AE、ED,A、直接求出比,B、先判斷出∠EBC≠60°,從而得出點P可能在ED上時,△PBQ是等邊三角形,但必須是AD的中點,而AE>ED,所以點P不可能到AD中點的位置,故△PBQ不可能是等邊三角形;C、利用相似三角形性質(zhì)列出方程解決,分兩種情況討論計算即可,D、分點P在BE上和點P在CD上兩種情況計算即可.【題目詳解】由圖象可知,AD=BC=BE=5,CD=AB=4,AE=3,DE=2,A、∴AB:AD=5:4,故A錯誤,B、∵tan∠ABE=,∴∠ABE≠30°∴∠PBQ≠60°,∴點P在ED時,有可能△PBQ是等邊三角形,∵BE=BC,∴點P到點E時,點Q到點C,∴點P在線段AD中點時,有可能△PBQ是等邊三角形,∵AE>DE,∴點P不可能到AD的中點,∴△PBQ不可能是等邊三角形,故B錯誤,C、∵△ABE∽△QBP,∴點E只有在CD上,且滿足,∴,∴CP=.∴t=(BE+ED+DQ)÷1=5+2+(4?)=.故C錯誤,D、①如圖(1)在Rt△ABE中,AB=4,BE=5sin∠AEB=,∴sin∠CBE=∵BP=t,∴PG=BPsin∠CBE=t,∴S△BPQ=BQ×PG=×t×t=t2=4,∴t=?(舍)或t=,②當點P在CD上時,S△BPQ=×BC×PC=×5×(5+2+4?t)=×(11?t)=4,∴t=,∴當△BPQ的面積為4cm2時,t的值是或秒,故D正確,故選:D.【題目點撥】此題是二次函數(shù)綜合題,主要考查動點問題的函數(shù)圖象、矩形的性質(zhì)、三角形的面積公式等知識.解題的關(guān)鍵是讀懂圖象信息求出相應(yīng)的線段,學會轉(zhuǎn)化的思想,把問題轉(zhuǎn)化為方程的思想解決,屬于中考??碱}型..12、D【分析】利用提公因式法解方程,即可得到答案.【題目詳解】解:∵,∴,∴或;故選擇:D.【題目點撥】本題考查了解一元二次方程,熟練掌握提公因式法解方程是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、【分析】連接DF,OD,根據(jù)圓周角定理得到∠CDF=90°,根據(jù)三角形的內(nèi)角和得到∠COD=120°,根據(jù)三角函數(shù)的定義得到CF==4,根據(jù)弧長公式即可得到結(jié)論.【題目詳解】解:如圖,連接DF,OD,∵CF是⊙O的直徑,∴∠CDF=90°,∵∠ADC=60°,∠A=90°,∴∠ACD=30°,∵CD平分∠ACB交AB于點D,∴∠DCF=30°,∵OC=OD,∴∠OCD=∠ODC=30°,∴∠COD=120°,在Rt△CAD中,CD=2AD=2,在Rt△FCD中,CF===4,∴⊙O的半徑=2,∴劣弧的長==π,故答案為π.【題目點撥】本題考查了圓周角定理,解直角三角形,弧長的計算,作出輔助線構(gòu)建直角三角形是本題的關(guān)鍵.14、6【分析】連接OD,根據(jù)垂徑定理,得出半徑OD的長和DE的長,然后根據(jù)勾股定理求出OE的長即可.【題目詳解】∵是⊙O的直徑,弦,垂足為E,∴OD=AB=10,DE=CD=8,在Rt中,由勾股定理可得:,故本題答案為:6.【題目點撥】本題考查了垂徑定理和勾股定理的應(yīng)用,正確添加輔助線,熟練掌握和靈活運用相關(guān)知識是解題的關(guān)鍵.15、1【分析】根據(jù)關(guān)于原點對稱的點的坐標特點:兩個點關(guān)于原點對稱時,它們的坐標符號相反.【題目詳解】∵點與關(guān)于原點對稱∴故填:1.【題目點撥】本題主要考查了關(guān)于原點對稱的點的坐標特點,熟練掌握點的變化規(guī)律是關(guān)鍵.16、1.【解題分析】】解:y=x2﹣1x+n中,a=1,b=﹣1,c=n,b2﹣1ac=16﹣1n=0,解得n=1.故答案為1.17、120°【分析】設(shè)扇形的半徑為r,圓心角為n°.利用扇形面積公式求出r,再利用弧長公式求出圓心角即可.【題目詳解】設(shè)扇形的半徑為r,圓心角為n°.由題意:,∴r=4,∴∴n=120,故答案為120°【題目點撥】本題考查扇形的面積的計算,弧長公式等知識,解題的關(guān)鍵是掌握基本知識.18、【分析】連接OC,根據(jù)菱形的判定,可得四邊形AODC為菱形,從而得出AC=OD,根據(jù)圓的性質(zhì)可得OE=OC=AC=OA=,從而得出△AOC為等邊三角形,然后根據(jù)同弧所對的圓周角是圓心角的一半,可求得∠EOC,從而得出OE平分∠AOC,根據(jù)三線合一和銳角三角函數(shù)即可求出OF,從而求出EF.【題目詳解】解:連接OC∵,,OA=OD∴四邊形AODC為菱形∴AC=OD∵∴OE=OC=AC=OA=∴△AOC為等邊三角形∴∠AOC=60°∵∴∠EOC=2∴OE平分∠AOC∴OE⊥AC在Rt△OFC中,cos∠EOC=∴∴EF=OE-OF=故答案為:.【題目點撥】此題考查的是菱形的判定及性質(zhì)、圓的基本性質(zhì)、等邊三角形的判定及性質(zhì)和解直角三角形,掌握菱形的判定及性質(zhì)、同弧所對的圓周角是圓心角的一半、等邊三角形的判定及性質(zhì)和用銳角三角函數(shù)解直角三角形是解決此題的關(guān)鍵.三、解答題(共78分)19、(1);(2);(3)當時,的值最大,最大值為9000元【分析】(1)根據(jù)待定系數(shù)法即可求出一次函數(shù)解析式;(2)根據(jù)題意列出二次函數(shù)即可求解;(3)根據(jù)二次函數(shù)的性質(zhì)即可得到最大值.【題目詳解】(1)設(shè)與的函數(shù)關(guān)系式為y=kx+b把(15,550)、(20,500)代入得解得∴(2)∵成本為10元,故每件利潤為(x-10)∴銷售利潤(3)=∵-10<0,∴當時,的值最大,最大值為9000元.【題目點撥】本題主要考查二次函數(shù)的應(yīng)用,理解題意抓住相等關(guān)系函數(shù)解析式是解題的關(guān)鍵.20、(1)△ABC是等腰三角形;(2)△ABC是直角三角形;(3)x1=0,x2=﹣1.【解題分析】試題分析:(1)直接將x=﹣1代入得出關(guān)于a,b的等式,進而得出a=b,即可判斷△ABC的形狀;(2)利用根的判別式進而得出關(guān)于a,b,c的等式,進而判斷△ABC的形狀;(3)利用△ABC是等邊三角形,則a=b=c,進而代入方程求出即可.試題解析:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有兩個相等的實數(shù)根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)當△ABC是等邊三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理為:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.考點:一元二次方程的應(yīng)用.21、見解析;見解析【分析】(1)根據(jù)題意連接OD并延長交圓上一點E,連接BE即可;(2)根據(jù)題意連接AD與BC交與一點,連接此點和O,并延長交圓上一點E,連接BE即可.【題目詳解】如圖:BE即為所求;如圖:BE即為所求;【題目點撥】本題主要考查復(fù)雜作圖、圓周角定理、垂徑定理以及切線的性質(zhì)的綜合應(yīng)用,解決問題的關(guān)鍵是掌握平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條?。?2、(1)證明見解析;(2)當∠DOE=90°時,四邊形BFED為菱形,理由見解析.【解題分析】試題分析:(1)利用平行四邊形的性質(zhì)以及全等三角形的判定方法得出△DOE≌△BOF(ASA);(2)首先利用一組對邊平行且相等的四邊形是平行四邊形得出四邊形EBFD是平行四邊形,進而利用垂直平分線的性質(zhì)得出BE=ED,即可得出答案.試題解析:(1)∵在?ABCD中,O為對角線BD的中點,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,∴△DOE≌△BOF(ASA);(2)當∠DOE=90°時,四邊形BFDE為菱形,理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD,∴四邊形EBFD是平行四邊形,∵∠EOD=90°,∴EF⊥BD,∴四邊形BFDE為菱形.考點:平行四邊形的性質(zhì);全等三角形的判定與性質(zhì);菱形的判定.23、(1)D;(2)見解析;(3).【分析】(1)根據(jù)不可能事件和隨機隨機的定義進行判斷;
(2)畫樹狀圖展示所有6種等可能的結(jié)果數(shù);
(3)找出A型器材被選中的結(jié)果數(shù),然后根據(jù)概率公式求解.【題目詳解】(1)只選購甲品牌的A型號為不可能事件.
故答案為D;
(2)畫樹狀圖為:
共有6種等可能的結(jié)果數(shù);
(3)A型器材被選中的結(jié)果數(shù)為2,
所以A型器材被選中的概率=.【題目點撥】此題考查列表法與樹狀圖法,解題關(guān)鍵在于利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 加強數(shù)字化農(nóng)業(yè)在水果產(chǎn)業(yè)中的實踐應(yīng)用
- 搪瓷制品的市場需求與消費者行為特征研究方案考核試卷
- 安全知識培訓(xùn)健康與安全管理最佳實踐分享考核試卷
- 2024家裝施工合同的范本
- 智慧城市中的智能社區(qū)與社交創(chuàng)新考核試卷
- 模具設(shè)計畢設(shè)匯報
- 2024辦公文檔范本員工訴企業(yè)“脅迫”簽訂修改勞動合同怎么辦
- 圣誕節(jié)活動策劃方案
- 寵物停車位租賃服務(wù)考核試卷
- 石油工業(yè)安全要求
- 2024年學校食堂管理工作計劃(六篇)
- 體育賽事組織服務(wù)協(xié)議
- 天車工競賽考核題
- 民辦非企業(yè)單位理事會制度
- 臨床輸血的護理課件
- 民生銀行在線測評真題
- 人教版(PEP)小學六年級英語上冊全冊教案
- 第二章 旅游線路類型及設(shè)計原則
- 大學美育學習通超星期末考試答案章節(jié)答案2024年
- 項目工作計劃表模板(共6篇)
- 臨時食堂施工方案
評論
0/150
提交評論