版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
廣西興業(yè)縣聯(lián)考2024屆九年級數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.一個長方形的面積為,且一邊長為,則另一邊的長為()A. B. C. D.2.正五邊形的每個內(nèi)角度數(shù)為()A.36° B.72° C.108° D.120°3.已知拋物線與二次函數(shù)的圖像相同,開口方向相同,且頂點坐標(biāo)為,它對應(yīng)的函數(shù)表達(dá)式為()A. B.C. D.4.在平面直角坐標(biāo)系中,點(2,-1)關(guān)于原點對稱的點的坐標(biāo)為()A. B. C. D.5.在?ABCD中,∠ACB=25°,現(xiàn)將?ABCD沿EF折疊,使點C與點A重合,點D落在G處,則∠GFE的度數(shù)()A.135° B.120° C.115° D.100°6.如圖,在平面直角坐標(biāo)系中,在軸上,,點的坐標(biāo)為,繞點逆時針旋轉(zhuǎn),得到,若點的對應(yīng)點恰好落在反比例函數(shù)的圖像上,則的值為()A.4. B.3.5 C.3. D.2.57.二次函數(shù)y=(x﹣4)2+2圖象的頂點坐標(biāo)是()A.(﹣4,2) B.(4,﹣2) C.(4,2) D.(﹣4,﹣2)8.下列成語描述的事件為隨機事件的是()A.水漲船高B.守株待兔C.水中撈月D.緣木求魚9.把一張矩形的紙片對折后和原矩形相似,那么大矩形與小矩形的相似比是()A.:1 B.4:1 C.3:1 D.2:110.將拋物線y=3x2﹣3向右平移3個單位長度,得到新拋物線的表達(dá)式為()A.y=3(x﹣3)2﹣3 B.y=3x2 C.y=3(x+3)2﹣3 D.y=3x2﹣611.將二次函數(shù)化成頂點式,變形正確的是:()A. B. C. D.12.如圖,在中,,過重心作、的垂線,垂足分別為、,則四邊形的面積與的面積之比為()A. B. C. D.二、填空題(每題4分,共24分)13.將二次函數(shù)y=2x2的圖像沿x軸向左平移2個單位,再向下平移3個單位后,所得函數(shù)圖像的函數(shù)關(guān)系式為______________.14.一個三角形的三邊之比為,與它相似的三角形的周長為,則與它相似的三角形的最長邊為____________.15.如圖,已知等邊的邊長為4,,且.連結(jié),并延長交于點,則線段的長度為__________.16.如圖,與中,,,,,AD的長為________.17.半徑為4的圓中,長為4的弦所對的圓周角的度數(shù)是_________.18.某學(xué)生想把放置在水平桌面上的一塊三角板(,),繞點按順時針方向旋轉(zhuǎn)角,轉(zhuǎn)到的位置,其中、分別是、的對應(yīng)點,在上(如圖所示),則角的度數(shù)為______.三、解答題(共78分)19.(8分)若關(guān)于的一元二次方程方有兩個不相等的實數(shù)根.⑴求的取值范圍.⑵若為小于的整數(shù),且該方程的根都是有理數(shù),求的值.20.(8分)如圖,△ABC是一塊銳角三角形的材料,邊BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個頂點分別在AB、AC上,這個正方形零件的邊長是多少mm.21.(8分)如圖,矩形中,,以為直徑作.(1)證明:是的切線;(2)若,連接,求陰影部分的面積.(結(jié)果保留)22.(10分)如圖1,將邊長為的正方形如圖放置在直角坐標(biāo)系中.(1)如圖2,若將正方形繞點順時針旋轉(zhuǎn)時,求點的坐標(biāo);(2)如圖3,若將正方形繞點順時針旋轉(zhuǎn)時,求點的坐標(biāo).23.(10分)如圖,點是的內(nèi)心,的延長線交于點,交的外接圓于點,連接,過點作直線,使;(1)求證:直線是的切線;(2)若,,求.24.(10分)已知是上一點,.(Ⅰ)如圖①,過點作的切線,與的延長線交于點,求的大小及的長;(Ⅱ)如圖②,為上一點,延長線與交于點,若,求的大小及的長.25.(12分)閱讀以下材料,并按要求完成相應(yīng)地任務(wù):萊昂哈德·歐拉(LeonhardEuler)是瑞士數(shù)學(xué)家,在數(shù)學(xué)上經(jīng)常見到以他的名字命名的重要常數(shù),公式和定理,下面是歐拉發(fā)現(xiàn)的一個定理:在△ABC中,R和r分別為外接圓和內(nèi)切圓的半徑,O和I分別為其外心和內(nèi)心,則.如圖1,⊙O和⊙I分別是△ABC的外接圓和內(nèi)切圓,⊙I與AB相切分于點F,設(shè)⊙O的半徑為R,⊙I的半徑為r,外心O(三角形三邊垂直平分線的交點)與內(nèi)心I(三角形三條角平分線的交點)之間的距離OI=d,則有d2=R2﹣2Rr.下面是該定理的證明過程(部分):延長AI交⊙O于點D,過點I作⊙O的直徑MN,連接DM,AN.∵∠D=∠N,∠DMI=∠NAI(同弧所對的圓周角相等),∴△MDI∽△ANI,∴,∴①,如圖2,在圖1(隱去MD,AN)的基礎(chǔ)上作⊙O的直徑DE,連接BE,BD,BI,IF,∵DE是⊙O的直徑,∴∠DBE=90°,∵⊙I與AB相切于點F,∴∠AFI=90°,∴∠DBE=∠IFA,∵∠BAD=∠E(同弧所對圓周角相等),∴△AIF∽△EDB,∴,∴②,任務(wù):(1)觀察發(fā)現(xiàn):,(用含R,d的代數(shù)式表示);(2)請判斷BD和ID的數(shù)量關(guān)系,并說明理由;(3)請觀察式子①和式子②,并利用任務(wù)(1),(2)的結(jié)論,按照上面的證明思路,完成該定理證明的剩余部分;(4)應(yīng)用:若△ABC的外接圓的半徑為5cm,內(nèi)切圓的半徑為2cm,則△ABC的外心與內(nèi)心之間的距離為cm.26.如圖,點在以線段為直徑的圓上,且,點在上,且于點,是線段的中點,連接、.(1)若,,求的長;(2)求證:.
參考答案一、選擇題(每題4分,共48分)1、A【分析】根據(jù)長方形的面積公式結(jié)合多項式除以多項式運算法則解題即可.【題目詳解】長方形的面積為,且一邊長為,另一邊的長為故選:A.【題目點撥】本題考查多項式除以單項式、長方形的面積等知識,是常見考點,難度較易,掌握相關(guān)知識是解題關(guān)鍵.2、C【解題分析】根據(jù)多邊形內(nèi)角和公式:,得出正五邊形的內(nèi)角和,再根據(jù)正五邊形的性質(zhì):五個角的角度都相等,即可得出每個內(nèi)角的度數(shù).【題目詳解】解:故選:C【題目點撥】本題考查的是多邊形的內(nèi)角和公式以及正五邊形的性質(zhì),掌握這兩個知識點是解題的關(guān)鍵.3、D【分析】先根據(jù)拋物線與二次函數(shù)的圖像相同,開口方向相同,確定出二次項系數(shù)a的值,然后再通過頂點坐標(biāo)即可得出拋物線的表達(dá)式.【題目詳解】∵拋物線與二次函數(shù)的圖像相同,開口方向相同,∵頂點坐標(biāo)為∴拋物線的表達(dá)式為故選:D.【題目點撥】本題主要考查拋物線的頂點式,掌握二次函數(shù)表達(dá)式中的頂點式是解題的關(guān)鍵.4、D【分析】根據(jù)關(guān)于原點的對稱點,橫、縱坐標(biāo)都互為相反數(shù)”解答即可得答案.【題目詳解】∵關(guān)于原點的對稱點,橫、縱坐標(biāo)都互為相反數(shù),∴點(2,-1)關(guān)于原點對稱的點的坐標(biāo)為(-2,1),故選:D.【題目點撥】本題主要考查了關(guān)于原點對稱的點的坐標(biāo)的特點,熟記關(guān)于原點的對稱點,橫、縱坐標(biāo)都互為相反數(shù)是解題關(guān)鍵.5、C【題目詳解】解:根據(jù)圖形的折疊可得:AE=EC,即∠EAC=∠ECA=25°,∠FEC=∠AEF,∠DFE=∠GFE,又∵∠EAC+∠ECA+∠AEC=180°,∴∠AEC=130°,∴∠FEC=65°,∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠DFE+∠FEC=180°,∴∠DFE=115°,∴∠GFE=115°,故選C.考點:1.平行四邊形的性質(zhì)2.圖形的折疊的性質(zhì).6、C【分析】先通過條件算出O’坐標(biāo),代入反比例函數(shù)求出k即可.【題目詳解】由題干可知,B點坐標(biāo)為(1,0),旋轉(zhuǎn)90°后,可知B’坐標(biāo)為(3,2),O’坐標(biāo)為(3,1).∵雙曲線經(jīng)過O’,∴1=,解得k=3.故選C.【題目點撥】本題考查反比例函數(shù)圖象與性質(zhì),關(guān)鍵在于坐標(biāo)平面內(nèi)的圖形變換找出關(guān)鍵點坐標(biāo).7、C【分析】利用二次函數(shù)頂點式可直接得到拋物線的頂點坐標(biāo).【題目詳解】解:∵y=(x﹣4)2+2,∴頂點坐標(biāo)為(4,2),故答案為C.【題目點撥】本題考查了二次函數(shù)的頂點式,掌握頂點式各參數(shù)的含義是解答本題的關(guān)鍵.8、B【解題分析】試題解析:水漲船高是必然事件,A不正確;守株待兔是隨機事件,B正確;水中撈月是不可能事件,C不正確緣木求魚是不可能事件,D不正確;故選B.考點:隨機事件.9、A【分析】設(shè)原矩形的長為2a,寬為b,對折后所得的矩形與原矩形相似,則【題目詳解】設(shè)原矩形的長為2a,寬為b,
則對折后的矩形的長為b,寬為a,
∵對折后所得的矩形與原矩形相似,
∴,
∴大矩形與小矩形的相似比是:1;
故選A.【題目點撥】理解好:如果兩個邊數(shù)相同的多邊形的對應(yīng)角相等,對應(yīng)邊成比例,這兩個或多個多邊形叫做相似多邊形,相似多邊形對應(yīng)邊的比叫做相似比.10、A【解題分析】根據(jù)二次函數(shù)的圖象平移規(guī)律:左加右減,上加下減,即可得出.【題目詳解】拋物線向右平移3個單位,得到的拋物線的解析式是故選A.【題目點撥】本題主要考查二次函數(shù)的圖象平移規(guī)律:左加右減,上加下減.11、A【分析】將化為頂點式,再進(jìn)行判斷即可.【題目詳解】故答案為:A.【題目點撥】本題考查了一元二次方程的問題,掌握一元二次方程的頂點式表示形式是解題的關(guān)鍵.12、C【分析】連接AG并延長交BC于點F,根據(jù)G為重心可知,AG=2FG,CF=BF,再證明△ADG∽△GEF,得出,設(shè)矩形CDGE中,DG=a,EG=b,用含a,b的式子將AC,BC的長表示出來,再列式化簡即可求出結(jié)果.【題目詳解】解:連接AG并延長交BC于點F,根據(jù)G為重心可知,AG=2FG,CF=BF,易得四邊形GDCE為矩形,∴DG∥BC,DG=CD=EG=CE,∠CDG=∠CEG=90°,∴∠AGD=∠AFC,∠ADG=∠GEF=90°,∴△ADG∽△GEF,∴.設(shè)矩形CDGE中,DG=a,EG=b,∴AC=AD+CD=2EG+EG=3b,BC=2CF=2(CE+EF)=2(DG+)=3a,∴.故選:C.【題目點撥】本題主要考查重心的概念及相似的判定與性質(zhì)以及矩形的性質(zhì),正確作出輔助線構(gòu)造相似三角形是解題的突破口,掌握基本概念和性質(zhì)是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、y=2(x+2)2-3【分析】根據(jù)“上加下減,左加右減”的原則進(jìn)行解答即可.【題目詳解】解:根據(jù)“上加下減,左加右減”的原則可知,二次函數(shù)y=2x2的圖象向左平移2個單位,再向下平移3個單位后得到的圖象表達(dá)式為y=2(x+2)2-3【題目點撥】本題考查的是二次函數(shù)的圖象與幾何變換,熟知“上加下減,左加右減”的原則是解答此題的關(guān)鍵.14、18cm.【分析】由一個三角形的三邊之比為3:6:4,可得與它相似的三角形的三邊之比為3:6:4,又由與它相似的三角形的周長為39cm,即可求得答案.【題目詳解】解:∵一個三角形的三邊之比為3:6:4,∴與它相似的三角形的三邊之比為3:6:4,∵與它相似的三角形的周長為39cm,∴與它相似的三角形的最長邊為:39×=18(cm).
故答案為:18cm.【題目點撥】此題考查了相似三角形的性質(zhì).此題比較簡單,注意相似三角形的對應(yīng)邊成比例.15、1【分析】作CF⊥AB,根據(jù)等邊三角形的性質(zhì)求出CF,再由BD⊥AB,由CF∥BD,得到△BDE∽△FCE,設(shè)BE為x,再根據(jù)對應(yīng)線段成比例即可求解.【題目詳解】作CF⊥AB,垂足為F,∵△ABC為等邊三角形,∴AF=AB=2,∴CF=又∵BD⊥AB,∴CF∥BD,∴△BDE∽△FCE,設(shè)BE為x,∴,即解得x=1故填:1.【題目點撥】此題主要考查相似三角形的判定與性質(zhì),解題的根據(jù)是根據(jù)題意構(gòu)造相似三角形進(jìn)行求解.16、【分析】先證明△ABC∽△ADB,然后根據(jù)相似三角形的判定與性質(zhì)列式求解即可.【題目詳解】∵,,∴△ABC∽△ADB,∴,∵,,∴,∴AD=.故答案為:.【題目點撥】本題考查了相似三角形的判定與性質(zhì):在判定兩個三角形相似時,應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形.靈活運用相似三角形的性質(zhì)進(jìn)行幾何計算.17、或【分析】首先根據(jù)題意畫出圖形,然后在優(yōu)弧上取點C,連接AC,BC,在劣弧上取點D,連接AD,BD,易得是等邊三角形,再利用圓周角定理,即可得出答案.【題目詳解】.如圖所示在優(yōu)弧上取點C,連接AC,BC,在劣弧上取點D,連接AD,BD,∵,∴∴是等邊三角形∴∴∴∴所對的圓周角的度數(shù)為或故答案為:或.【題目點撥】本題考查了圓周角的問題,掌握圓周角定理是解題的關(guān)鍵.18、60°【分析】根據(jù)題意有∠ACB=90,∠A=30,進(jìn)而可得∠ABC=60,又有∠ACA′=BCB′=∠ABA′=,可得∠CBB′=(180?),代入數(shù)據(jù)可得答案.【題目詳解】∵∠ACB=90,∠A=30,∴∠ABC=60,∴∠ACA′=BCB′=∠ABA′=,∠CBB′=(180?),∴=∠ABC=60.故答案為:60.【題目點撥】本題考查旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)變化前后,對應(yīng)點到旋轉(zhuǎn)中心的距離相等以及每一對對應(yīng)點與旋轉(zhuǎn)中心連線所構(gòu)成的旋轉(zhuǎn)角相等.要注意旋轉(zhuǎn)的三要素:①定點是旋轉(zhuǎn)中心;②旋轉(zhuǎn)方向;③旋轉(zhuǎn)角度.三、解答題(共78分)19、(1)且.(2)或【分析】(1)根據(jù)一元二次方程根的判別式,即可求出答案;(2)結(jié)合(1),得到m的整數(shù)解,由該方程的根都是有理數(shù),即可得到答案.【題目詳解】解:(1)∵方程有兩個不相等的實數(shù)根,,解得:又,的取值范圍為:且;(2)為小于的整數(shù),又且.可以?。?,,,,,,,,,,.當(dāng)或時,或為平方數(shù),此時該方程的根都是有理數(shù).∴的值為:或.【題目點撥】本題考查了一元二次方程根的判別式,解題的關(guān)鍵是熟練掌握根的判別式,利用根的判別式求參數(shù)的值.20、48mm【分析】設(shè)正方形的邊長為x,表示出AI的長度,然后根據(jù)相似三角形對應(yīng)高的比等于相似比列出比例式,然后進(jìn)行計算即可得解.【題目詳解】設(shè)正方形的邊長為xmm,則AI=AD﹣x=80﹣x,∵EFHG是正方形,∴EF∥GH,∴△AEF∽△ABC,∴,即,解得x=48mm,∴這個正方形零件的邊長是48mm.【題目點撥】本題主要考查了相似三角形判定與性質(zhì)的綜合運用,熟練掌握相關(guān)概念是解題關(guān)鍵.21、(1)見解析;(2)【分析】(1)過O點作OE⊥CD于E點,證四邊形OEBC為正方形,可得OE為半徑,問題即可得證.(2)連接BE,S陰影=S△BED+(S扇形OBE-S△BOE),代入數(shù)值求解即可.【題目詳解】(1)過O點作OE⊥CD于E點,則∠OEC=90°∵四邊形ABCD為矩形∴∠ABC=∠BCE=90°∴四邊形OECB為矩形又AB=2BC,AB=2OB∴OB=BC∴四邊形OBCE為正方形∴OE=OB又OE⊥CD故CD為O的切線.(2)連接BE,由(1)可得:四邊形OBCE為正方形∴OB=OE=EC=OB=3,DC=AB=6,DE=3∴S陰影=S△BED+(S扇形OBE-S△BOE)=【題目點撥】本題考查的是圓的切線及扇形的面積計算,掌握圓的切線的證明方法及扇形的面積計算公式是關(guān)鍵.22、(1)A;(2)B【分析】(1)作軸于點,則,,求得AD=1,根據(jù)勾股定理求得OD=,即可得出點A的坐標(biāo);(2)連接BO,過點作軸于點,根據(jù)旋轉(zhuǎn)角為75°,可得∠BOE=30°,根據(jù)勾股定理可得,再根據(jù)Rt△BOD中,,,可得點B的坐標(biāo).【題目詳解】解:(1)如圖1,作軸于點,則,,點的坐標(biāo)為.圖1(2)如圖2,連接,過點作軸于點,則,在中,在中,,點的坐標(biāo)為.圖2【題目點撥】本題主要考查了旋轉(zhuǎn)變換以及正方形的性質(zhì),解決問題的關(guān)鍵是作輔助線構(gòu)造直角三角形,解題時注意:正方形的四條邊都相等,四個角都是直角.23、(1)證明見解析;(2).【分析】(1)首先根據(jù)三角形內(nèi)心的性質(zhì)得出,然后利用等弧對等角進(jìn)行等量轉(zhuǎn)換,得出,最后利用垂徑定理即可得證;(2)利用相似三角形的判定以及性質(zhì)即可得解.【題目詳解】(1)證明:如圖所示,連接,∵點是的內(nèi)心,∴,∴,∴,又∵,,∴,∴,∴,又∵為半徑,∴直線是的切線;(2)∵,∴,又∵(公共角),∴,∴,即,∵,∴∴∴.【題目點撥】此題主要考查圓的切線的證明以及相似三角形的判定與性質(zhì),熟練掌握,即可解題.24、(Ⅰ),PA=4;(Ⅱ),【分析】(Ⅰ)易得△OAC是等邊三角形即∠AOC=60°,又由PC是○O的切線故PC⊥OC,即∠OCP=90°可得∠P的度數(shù),由OC=4可得PA的長度(Ⅱ)由(Ⅰ)知△OAC是等邊三角形,易得∠APC=45°;過點C作CD⊥AB于點D,易得AD=AO=CO,在Rt△DOC中易得CD的長,即可求解【題目詳解】解:(Ⅰ)∵AB是○O的直徑,∴OA是○O的半徑.∵∠OAC=60°,OA=OC,∴△OAC是等邊三角形.∴∠AOC=60°.∵PC是○O的切線,OC為○O的半徑,∴PC⊥OC,即∠OCP=90°∴∠P=30°.∴PO=2CO=8.∴PA=PO-AO=PO-CO=4.(Ⅱ)由(Ⅰ)知△OAC是等邊三角形,∴∠AOC=∠ACO=∠OAC=60°∴∠AQC=30°.∵AQ=CQ,∴∠ACQ=∠QAC=75°∴∠ACQ-∠ACO=∠QAC-∠OAC=15°即∠QCO=∠QAO=15°.∴∠APC=∠AQC+∠QAO=45°.如圖②,過點C作CD⊥AB于點D.∵△OAC是等邊三角形,CD⊥AB于點D,∴∠DCO=30°,AD=AO=CO=2.∵∠APC=45°,∴∠DCQ=∠APC=45°∴PD=CD在Rt△DOC中,OC=4,∠DCO=30°,∴OD=2,∴CD=2∴PD=CD=2∴AP=AD+DP=2+2【題目點撥】此題主要考查圓的綜合應(yīng)用25、(1)R-d;(2)BD=ID,理由見解析;(3)見解析;(4).【解題分析】(1)直接觀察可得;(2)由三角形內(nèi)心的性質(zhì)可得∠BAD=∠CAD,∠CBI=∠ABI,由圓周角定理可得∠DBC=∠CAD,再根據(jù)三角形外角的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2022年甘肅省甘南自治州公開招聘警務(wù)輔助人員筆試自考題2卷含答案
- 2022年四川省雅安市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2022年浙江省湖州市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 晨會主持發(fā)言稿
- 廣西梧州市(2024年-2025年小學(xué)六年級語文)統(tǒng)編版隨堂測試(下學(xué)期)試卷及答案
- 2024年姿態(tài)控制推力器、推進(jìn)劑貯箱項目資金需求報告代可行性研究報告
- 《應(yīng)收款項新》課件
- 《稱贊教學(xué)》課件
- 2025年毛紡織、染整加工產(chǎn)品項目立項申請報告模范
- 2025年水乳型涂料項目提案報告模范
- 安防主管崗位招聘面試題及回答建議(某大型集團公司)2025年
- 消防疏散演練宣傳
- 2023-2024學(xué)年廣東省廣州市越秀區(qū)九年級(上)期末語文試卷
- 五年級數(shù)學(xué)下冊 課前預(yù)習(xí)單(人教版)
- 2024-2030年中國石油壓裂支撐劑行業(yè)供需現(xiàn)狀及投資可行性分析報告
- 醫(yī)療企業(yè)未來三年戰(zhàn)略規(guī)劃
- 急診科運用PDCA循環(huán)降低急診危重患者院內(nèi)轉(zhuǎn)運風(fēng)險品管圈QCC專案結(jié)題
- 2024年統(tǒng)編版新教材語文小學(xué)一年級上冊全冊單元測試題及答案(共8單元)
- 四川雅安文化旅游集團有限責(zé)任公司招聘考試試卷及答案
- 醫(yī)務(wù)人員職業(yè)暴露預(yù)防及處理課件(完整版)
- DB11T 1470-2022 鋼筋套筒灌漿連接技術(shù)規(guī)程
評論
0/150
提交評論