版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
WorkingPaperSeries
CongressionalBudgetOffice
Washington,D.C.
ModelingtheDemandforElectricVehicles
andtheSupplyofChargingStations
intheUnitedStates
DavidAustin
CongressionalBudgetOffice
david.austin@
WorkingPaper2023-06
September2023
ToenhancethetransparencyoftheworkoftheCongressionalBudgetOfficeandtoencourageexternalreviewofthatwork,CBO’sworkingpaperseriesincludespapersthatprovidetechnicaldescriptionsofofficialCBOanalysesaswellaspapersthatrepresentindependentresearchbyCBOanalysts.Papersinthisseriesareavailableat
/xUzd7.
TheinformationinthispaperispreliminaryandisbeingcirculatedtostimulatediscussionandcriticalcommentasdevelopmentalworkforanalysisfortheCongress.
IamgratefultoNicholasChase,TerryM.Dinan(formerlyofCBO),MichaelFalkenheim,RonGecan,
EvanHerrnstadt,JosephKile,AaronKrupkin,RobertReese,andChadShirleyforhelpfulcommentsandsuggestions.IalsothankShanjunLiofCornellUniversityandJohnMaplesoftheEnergyInformation
Administration.Althoughthoseexpertsprovidedconsiderableassistance,theyarenotresponsibleforthecontentsofthispaper.RebeccaLanningeditedthepaper,andCaseyLabrackcreatedthegraphics.
ii
Abstract
Thispaperpresentsasimulationmodelofthemarketsforlight-dutyelectricvehicles(EVs)andtheassociatedpubliccharginginfrastructure,aswellasthenetworkinteractionsbetweenthem.Itillustratesthemodel’sattributesbysimulatingtheeffectsoffederalsubsidiesforpublicelectricvehiclechargersandofanextensionoftaxcreditsforelectricvehicles.Iprojectthatbytheearly2030sthechargersubsidies,whichweresignedintolawin2021aspartoftheInfrastructure
InvestmentandJobsAct,willhaveincreasedthesizeofthechargernetworkenoughtomeetthedemandforchargingthroughthemiddleofthatdecade.Thatincludestheadditionaldemandthattheexpansionitselfwillinduce:Iprojectthatthrough2030,salesofEVswillrisemorethan
20percentmorerapidlywiththeexpandedchargernetworkthantheywouldhaveotherwise.
IncludingtheadditionaleffectoftheEVtaxcreditsthatweresignedintolawaspartofthe2022reconciliationact,aswellaspastgrowthinEVsales,IprojectthatEVswillconstitutebetween27percentand60percentofnewlight-dutyvehiclesalesby2032,comparedwithabout
6.5percentin2022.AfterthesubsidyfundingfromtheInfrastructureInvestmentandJobsActhasbeenspentandtheavailableEVtaxcreditsclaimed,EVchargernetworksandtheEVfleetwillremainsomewhatlargerthantheywouldhavebeenintheabsenceofthosepolicies.
Keywords:Electricvehicles,charginginfrastructure,networkeffects,taxcredits,subsidies
JELClassification:H23,H54,L98
iii
Contents
Abstract ii
Contents iii
1.Introduction 1
2.DemandforElectricVehicles 3
2.1FactorsThatInfluenceEVMarketShare 4
2.2AttributeDrift 6
2.3ModelCalibrationAdjustmenttoAttributeDriftTerm 7
3.SupplyofEVChargers 10
4.ModelBaseCase:FederalChargerSubsidiesandEVTaxCredits 12
4.1FederalChargerSubsidies:DescriptionofModelingApproach 13
4.2FederalEVTaxCredits:DescriptionofModelingApproach 14
4.3PolicyEffectsonEVChargerNetworks 17
4.4EffectsonMarketShareofNewEVs 20
4.5ModelUncertainty 23
4.6ComparisonofCBO’sandOtherProjections 24
AppendixA:ParameterValues 26
AppendixB:SensitivityAnalyses 28
SensitivityAnalysis1:ChangethePriceElasticityofNew-EVMarketShareby25Percent.28
SensitivityAnalysis2:ChangetheSensitivityofEVDemandWithRespecttoEVChargers
by25Percent 29
SensitivityAnalysis3:AlternativeTimeTrendsfortheAttributeDriftTerm 31
SensitivityAnalysis4:ChangetheRateofDecreaseinEVProductionCostsby50Percent.32
SensitivityAnalysis5:CompareICCT’sLow,Moderate,andHighCasesforEVTax-Credit
Eligibility 34
SensitivityAnalysis6:ChangetheAmountofEVLeasingThatOccursasaWayofClaiming
EVTaxCredits 36
AppendixC:AProposedRuleonTailpipeEmissions 38
References 41
1
1.Introduction
Thispaperprovidesanoverviewofananalysisthatjointlymodelsthedemandforlight-duty,
plug-inelectricvehicles(EVs)andthesupplyofpublicEVchargers.AstheCongressconsidersoradoptsarangeofpoliciesthatwouldsubsidizesalesofplug-inelectricvehicles,eitherdirectlyorindirectly,thismodelgivestheCongressionalBudgetOfficeanadditionaltoolforestimatingtheeffectsofthosepoliciesonthefederalbudget,carbondioxideemissions,andthedemandforelectricityandgasoline.Themodelprojectssalesofnewelectricvehicles—includingplug-in
hybrid-electricvehicles—asashareofsalesofallnewpassengervehicles.Thatshareismodeledasafunctionofpredictedvehiclecosts(production,operation,andmaintenance);thesizeoftheEVchargernetwork(includingslowerlevel2,orL2,chargerswithrespecttothenumberof
registeredEVsandfasterL3,or“DCfast,”chargerswithrespecttothesizeofthenational
highwaysystem);andconsumers’preferencesforEVsorsimilarcarswithinternalcombustionengines.ThemodelalsoprojectsthestockofEVchargersasafunctionofthepredictedcostofsupplyingachargerandtheprojectedsizeoftheelectricvehiclefleet.
ThemodelbuildsonrecentworkbyColeetal.(2023),whomodelthedemandforEVsandthesupplyofEVchargersasjointlydetermined.1ThedemandforEVsispresentedasdependingonthesizeoftheEVchargernetwork:Thelargerthatnetwork,themoreutilityanEVprovides,
becauseitcanbedriventomoreplacesandrechargedmoreeasily.Similarly,inColeetal.
(2023)thesupplyofchargersdependsonsalesofEVs:ThelargertheEVfleet,themoreuseeachEVchargerreceivesandthemorerevenueitgeneratesperunitoftime.
Themodeldescribedheretakesasimilarapproachbutwithtwoimportantdifferences.First,it
incorporatesintoitsbasecasetheanticipatedeffectsofupto$7.5billioninfederalEVchargersubsidiesprovidedbytheInfrastructureInvestmentandJobsAct(IIJA;PublicLaw117-58)in
2021,alongwiththeanticipatedeffectsoftheEVtaxcreditsprovidedbythe2022reconciliationact(P.L.117-169).2
Beforetheenactmentofthe2022reconciliationact,CBOandthestaffoftheJointCommitteeonTaxation(JCT)preparedanestimateofitsbudgetaryeffects(CBO2022).Asrequiredbythe
CongressionalBudgetActof1974,CBOestimatedtheeffectsofthespendingprovisions,andJCTestimatedtheeffectsofthetaxprovisions.Bystatute,thecostestimateforthe2022
reconciliationactpublishedbyCBOdirectlyincorporatedJCT’sestimatesofthebudgetary
effectsoftheenergy-relatedtaxprovisionsofthatbill,includingthoserelatedtoelectricpower,
1Coleetal.(2023),citingZhouandLi(2018)andSpringel(2021).
2ThebasecasepresentedinthispaperisnotaninputtoCBO’sbudgetbaseline.Itisanoutputofastand-aloneCBOmodelbasedonrecentmarkettrendsandfindingsfromtheliterature.
2
electricvehicles,carboncaptureandsequestration,andcleanenergymanufacturing.Themodeldescribedinthisworkingpaperwasnotusedinpreparingthatcostestimate.
TheseconddifferencefromtheapproachtakenbyColeetal.(2023)isthatIcalibratethemodelsothatitsbase-yearsupplyofchargersmatchesthemostrecentfull-yearnumberreportedintheAlternativeFuelsDataCenter’sstationlocatordatabaseandsothat,oncetheIIJAsubsidiesareexhausted,itprojectsaratioofL2chargerstoEVsapproximatelyequaltothecurrentratioof
about3chargingportsper100EVs.3Thatservesasmyestimateoftheoptimal(profit-
maximizing)ratioforchargersuppliers,evenasthenumberofregisteredEVscontinuesto
increase.Coleetal.(2023)calibratetheirmodeltoafutureratiothatisaboutthreetimeshigher.
Inthispaper,IdiscussthedemandforEVsandparticularlymyapproachtowardattributedrift,orchangesincertainattributesofEVownershipthataffectconsumers’preferencesforEVsorinternalcombustionenginevehicles(ICEVs).(Thoseattributes,whicharenototherwise
specifiedinmymodel,includetheavailabilityandperformanceofEVchargers,social
influences,andmanyattributesofthevehiclesthemselves.)TheattributedrifttermallowsthemodeltomoreaccuratelyaccountforrecenttrendsinEVsales.Thosesalesexceedwhatthe
modelwouldpredictsolelyonthebasisoftheothertermsinthedemandequation:therelativeownershipcostsofEVsandICEVs,thenumberofpubliclyaccessiblechargersperEVandperhighwaymile,andpastsalesofEVs.
Next,IdiscussthesupplyofEVchargers.ThemodelhasasupplyequationgivingthenumberofchargingstationsbyyearasafunctionofthesizeoftheEVfleet,thecostofsupplyingachargerthatyearcomparedwiththeanticipatedlowercostthenextyear,andthenumberofcharging
stationsthatexistedthepreviousyear.Ifinanyyearitisoptimal,inthemodel,forsupplierstoaddnonewEVchargers,thesizeofthechargernetworkwilldeclinethatyearbythenumberofchargersthatwillfail,basedonratesoffailurethatincreasewithchargerage.ThediscussionofchargersupplyalsodescribeshowImodelthefederalIIJAsubsidiesforEVchargers.
IusethemodeltoprojectannualsalesofnewEVsandthesupplyofnewchargingstations
through2050.Thedemandandsupplyequationsinteract:ThesizeofthechargernetworkaffectsEVdemand,andthesizeoftheEVfleetaffectsthesupplyofchargers.Detailsaboutthevaluesusedforthemodel’sparametersandsixsensitivityanalysesofinfluentialparametersare
providedin
AppendixA
and
AppendixB,
respectively.
ThemodeldescribedinthispaperprovidesCBOwithatoolforestimatingtheeffectsof
developmentsintheautomobileindustry,andinfederalpolicytowardEVsales,onthefederal
3ThenumberofEVchargersperchargingstationvaries,currentlyaveragingabout2chargersperstationaccordingtothestationlocatordatabase.EVchargersmayhavemultipleportsforchargingmorethanonevehicleatatime,
justasfuelpumpswithmultiplenozzlescanrefuelmorethanonevehicleatatimeatagasstation.
3
budgetandtheeconomy.Thispaperprovidestransparencyintothatmodel,whichwas
developedwhiletheTreasuryDepartmentwasdevelopingguidanceoneligibilityrequirementsforelectricvehiclestoqualifyfortaxcredits.ThepercentageofEVsthatwillultimatelyqualifyforthosecreditsisnotknownwithprecision.Theprojectionsprovidedinthispaperreflectthatandothersourcesofuncertainty(see
AppendixA)
.
2.DemandforElectricVehicles
Inthemodel,vehiclebuyerschoosebetweenelectricandinternalcombustionversionsoftheirdesiredvehicle.Ianalyzecarsandlighttrucksseparatelybutdonotdistinguishbetween
differentvehiclemakesandmodels.Inthevehiclesalesdatausedinthissimulationmodel,Iclassifyplug-inhybridvehiclesasEVsandnon-plug-inhybridvehiclesasICEVs.
Aconsumer’schoiceofanEVoranICEVdependsonexpectedownershipcosts,thedensityof
theEVchargernetwork,andshiftsinconsumers’preferencesforEVs(asmodeledbyattributedrift).Iestimateavehicle’sexpectedownershipcostasitspurchaseprice—accountingfortheEVtaxcreditscontainedinthe2022reconciliationact—plusitsexpectedoperatingand
maintenancecostsoveritsfirsteightyears,discountedtothedateofpurchase.4ImeasurethedensityofthechargernetworkintermsofthenumberofrapidchargersperhighwaymileandthenumberofslowerchargersperEV.5
Attributedriftcanbethoughtofasreflectingtheeffectsonconsumers’preferencesforEVsorICEVsoffactorsnototherwiseincludedinthemodel.Examplesofsuchfactorsinclude
improvementsinEVsorthechargernetwork,breadthandavailabilityofEVmodelsrelativetoICEVs,andsocialinfluencessuchasproportionofEVownershipamongacquaintancesand
otherdrivers.Withoutattributedrift,themodelwouldprojectfutureEVsalessolelyonthebasisoftrendsinvehiclecostsandnetworkdensity.Icalibratethedrifttermsothatthemodel’s
4InvaluingexpectedfuturesavingsonmaintenanceandoperatingcostsforanEVversusanICEV,Iuseadiscountrateofabout10percent.Thatratecombinesapreferenceforreceivingvaluetodayversusinthefuturewithan
observedtendencyforconsumerstoundervaluefuturesavingsfromenergy-efficienttechnologies.Iuse3percentas
consumers’rateoftimepreference,andImodelconsumersasundervaluingfuturesavingsinenergyand
maintenancecostsbyanaverageof25percent.(Theactualreductioncomesfromaprobabilitydensitythataverages25percent.)SeeAllcottandWozny(2014);seealsoHelfandandWolverton(2011).Finally,Imodelconsumersasvaluingfuturesavingsovereightyearsratherthanovertheexpectedlifeofthevehicle.Thecombinationofthose
factorsamountstodiscountingfuturesavingsatanannualrateofabout10percent.InsensitivitytestingIfindthatcountingjustfiveyearsofexpectedsavingsdoesnotsubstantiallychangethemodel’sprojections.
5AlthoughmyEVprojectionsdonotaccountforpaneltrucksorotherfreight-deliveryvehicles,thosevehicleswilltypicallyrechargeinprivatefleetfacilitiesovernightoratdedicatedtruckstopsandwillthusnottendtocompete
withpassengervehiclesforaccesstothepubliccharginginfrastructure.L3rapidchargerscanrechargemostcarstoabout80percentofcapacityinabout20minutesandaremostsuitableforplacementalonghighways.SlowerL2
chargerstakefourorfivehourstoprovideacomparablechargeandaremoresuitableforplacementinparkingfacilities.Forchargingtimes,seeAlternativeFuelsDataCenter,“DevelopingInfrastructuretoChargeElectricVehicles.”
4
projectedEVsalesthrough2030—ignoringtheexpectedinfluenceofthefederalIIJAchargersubsidiesandEVtaxcredits—areconsistentwiththeobservedEVsalestrendoverthepast
severalyears.(ThenextsectionpresentsEVsalesprojectionsthatarebasedondifferent
assumptionsaboutattributedrift.)Finally,Iadjusttheinterceptandattributedrifttermssothat,giventheotherparametervaluesinthemodel,itsbase-yearEVsalesmatchobservedtotalsfrommostrecentfullyear,currently2021.
2.1FactorsThatInfluenceEVMarketShare
ImodelthedemandforEVsasarisingfromanunderlyingconsumerutilityfunction:
ui,j,t=aj+ln?pj,t??βp+ln?L2tΤTotEvt?1??βL2+ln?L3tΤHWYMiles??βL3+ψt+Ei,j,t,
whereiindexesindividualconsumers,jisvehicletype(carorlighttruck),andtistimeinyears.Theβtermsareparametersassociatedwith,respectively,thesensitivityofthedemandforEVs
tochangesinthefollowing:ownershipcostpj,tofanEVoftypejinyeartrelativetothatfora
comparableICEV;thenumberofslowerL2chargersperregisteredEVinyeart;andthenumberoffasterL3chargersperhighwaymile.6Finally,ψtisattributedrift,andEi,j,tisanidiosyncratictasteshockdistributedastypeI(Gumbel)extremevalue(Coleetal.2023).Ifurtherdescribetheparametersbelow.
ToensurethatEVandICEVownershipcosts(pj,t)arecomparedonanequalbasis,Icalculate
thecostsforbothtypesofvehicleusingthenumberofmilesthatapotentialbuyerwouldexpecttodriveinanEV.Untilrecently,EVswereestimatedtobedrivenonlyabout60percentasmanymilesasICEVs,onaverage(Burligetal.2021).WithexpansionintheEVchargernetworkandimprovedbatterycapacities,thatratioappearstobeincreasingovertime.Toreflectthat,ImodeltheratioofmilesdrivenbyEVsversusICEVsascurrentlyaveraging60percentandgradually
increasingto100percentby2035.
ThatincreasecontributestogrowthintheprojecteddemandforEVs,becauseitmeansthat
expectedannualenergysavingsfromEVsversusICEVsarealsoincreasing.Somecurrent
evidencesuggeststhatmanyEVsarealreadybeingdrivenasmanymilesascomparableICEVs(Spilleretal.2023).Ifso,currentdemandforEVsmayalreadyreflectmuchofthoseenergy
savings,andthusthemodelmaybeslightlyoverstatingthatsourceofgrowthinprojected
demand.However,thecontributionofhigherfutureenergysavingstogrowthinthedemandforEVsisrelativelysmall.
6ItreatHwyMilesasconstant,althoughitmayincreasegraduallyovertime.Ialsoholdconstanttheenergy
efficiencyofEVs(althoughbatterycostscontinuallydecline,whichisequivalenttoincreasingenergyefficiency
fromtheperspectiveofownershipcosts)andICEVsaftermodelyear2026becausecorporateaveragefueleconomy(CAFE)standardsforlatermodelyearshavenotyetbeenspecified.Through2026,ItreatbothaverageICEVfueleconomyandmanufacturingcostsasrisingwithincreasinglystringentCAFEstandards(see
AppendixA)
.
5
LiketheeffectofanticipatedgrowthinEVmilesdriven,therateofdecreaseinEVbatterycostsisalsofavorabletoEVs.Thatratecouldslowifitbecamemoredifficulttominethescarce
materialsusedinbatteries.Conversely,innovationsinbatterytechnology,whichwouldbespurredbyconcernsaboutthescarcityofmaterials,couldsustainorincreasebatterycostreductions(see
AppendixA)
.
ExistingempiricalresearchonthesensitivityofEVdemandtothesizeofthechargernetworkdoesnotdistinguishbetweenL2andL3chargers.Thus,IassignthesamevaluetobothβL2andβL3.Evenso,withabout15.4registeredEVsperhighwaymileintheUnitedStatesattheendof2022—aratiothatwillincreaseovertime—eachadditionalL3chargeristhereforemodeledashavingln?TotEVΤHWYMiles?=ln?15.4?=2.7timesmoreinfluenceonEVdemandat
presentthaneachnewL2chargerhas.7
Thatconsumerutilityfunction—or,moreprecisely,thetypeIextreme-valuetermreflecting
variationinindividuals,vehicles,andtimeinconsumers’preferencesforpassengervehicles—
yieldsatractableandlogicallyappealingexpression(itsvaluesrangefrom0to1)forthemarketshareofEVsversusICEVs.Withthatutilityfunction,thesharesofEVsamongallnewlight-
dutyvehiclesaregivenbyapairoflogisticfunctions,oneeachforcarsandlighttrucks.Logisticfunctions’familiarS-shapedcurvesareusefulformodelingtechnologydiffusionbecausethey
asymptoteatsharesof0and1:
EVs?arej,t=
e?aj+xtβj+ψt?
1+e?aj+xtβj+ψt?,
whereαjisacalibrationparameterforsettingthemodel’sinitialEVsharefornewvehiclesoftypej∈{car,truck}tothecurrentlyobservedvalue;Xtismatrixshorthandforthefactorspj,t,(L2t/TotEVt-1),and(L3t/HwyMiles)thatunderliethedemandforEVsinthismodel;βjisvectorshorthandforthethreecorrespondingdemand-responseparametersβp,βL2,andβL3;andΨtistheattributedriftparameter,discussedingreaterdetailinthenextsection.
TheβjparametersreflecthowsalesofnewEVsrespondtochangesinvehicleownershipcosts(includingpurchaseprice)orinthechargernetworkandhavethefollowingsigns:βp<0
(increasesinownershipcostsreducethedemandforEVs),βL2>0,andβL3>0(increasesinL2chargersperEVorinL3chargersperhighwaymileincreasethedemandforEVs).Theβjparametersarerelatedtoelasticitiesofdemandwhendemandismeasuredintermsofmarket
7AsofDecember2022,therewereabout3.4millionelectricvehiclesregisteredintheUnitedStates,includingEVs
andplug-inhybridEVs(AlternativeFuelsDataCenter,“ElectricVehicleRegistrationsbyState”).TheNationalHighwaySystemintheUnitedStatescurrentlyincludesabout224,000milesofhighway,includingabout
67,000milesofinterstatehighwaysandotherfreewaysand157,000milesofotherprincipalarterialhighways(FederalHighwayAdministration2021).
6
share(ratherthanunitsales).Forexample,thepriceelasticityofmarketsharefornewEVs,inyeart,isgivenbyβp??1?EVs?aTet?—meaningthata1percentdecreaseintherelative
ownershipcostofanEVversusanICEVwouldincreasethemarketshareofnewEVsbyβp??1?EVs?aTet?percentinyeart.8
AslongasthemarketshareofnewEVsremainssmall,thepriceelasticityofmarketsharewillapproximatelyequalβp.TheelasticitywilldeclineastheshareofnewEVsincreases.
Ultimately,astheshareofnewEVsapproaches100percent,theelasticitywillapproachzero.
ThechargernetworkelasticitiesofmarketsharefornewEVshavethesameformasthepriceelasticity:Anincreaseof1percentinthenumberofL2chargersperEV,orinL3chargersperhighwaymile,wouldincreasethemarketshareofnewEVsby{βL2OTβL3}??1?EVs?aTet?.
AppendixA
liststheparametervaluesanddatausedinthemodel,alongwiththeirsources.
Vehiclesalesareaggregatetotalsforplug-invehicles(EVsandplug-inhybridEVs)andvehiclesthatdonotplugin(ICEVsthatrunongasolineordieselandhybridEVsthatdonotplugin).
Vehicleproductioncostsandfuelcostsaregivenforrepresentativevehicles:EVsratherthanplug-inhybridEVsbecauseEVsoutsellthembyasubstantialmargin,andgasoline-powered
ICEVs(ofaveragefuelefficiency)ratherthandieselornon-plug-inhybridEVs,forthesamereason(EIA2022b).EVproductioncostsreflectestimatesforcarbatterieswithacapacityof70kilowatt-hoursandbatteriesforlighttruckswithacapacityof120kilowatt-hours,both
providingarangeof240miles.Futuredecreasesinbatteryproductioncostsaretreatedas
reducingthepricesofnewEVs.9
AppendixB
presentstheresultsofsensitivityanalysesonthemostinfluentialparametersinthemodel,includingtheβj,ttermsrelatingtotheownershipcostandnetworksizeelasticitiesofdemandfornewEVs.
2.2AttributeDrift
ThetermattributedriftreferstochangesinunspecifiedattributesofEVownership(including
attributesofthevehiclesthemselves;theiravailabilityinthenew-vehiclemarketplacerelativetoICEVs;attributesofEVchargernetworks,includingavailabilityandperformanceofvehicle
chargers;andtheinfluenceofsocialfactors)thataffectconsumers’preferencesforEVsrelativetoICEVs.IntheEVdemandequation,attributedriftattimetis
8RelativeownershipcostsofEVsandICEVsdependonpurchasepricesandthepresentvalueofexpectedlifetimecostsoffuelandmaintenance,givenanassumednumberofmilestraveledperyearasavehicleages.Purchase
pricesareestimatedasmarkupsofprojectedproductioncosts,includingthecostofEVbatteries.Theprice-andcharger-supplyelasticitiesofdemandaredrawnfromprobabilitydensitiesthatreflecttherangeandqualityofestimatesfoundintheliterature(see
AppendixA)
.
9Thetechnologicaladvancesthatthosecostdecreasesrepresentcouldinsteadbeusedtoincreasebatteryrangewhileholdingvehiclepricesfixed;eitherusewouldincreaseEVsales.
7
ψt=μ+ψt?1+ζt,
whereψ0=0,μisaconstanttimetrend,andζtisamean-zeroannualdeparturefromthattrend.
Greaterattributedrift—ahighertrendvalueμ—projectsamorerapidshifttoEVs.Inthe
model’ssimulations,trendμisrandomlydrawn,withameanvaluethatdependsonβp:ThemoreresponsiveconsumersaretochangesintherelativecostsofEVownership,themore
rapidlytheshifttoEVswouldoccurwithdecreasesinthosecosts.Bothμandζtaredrawnfromnormaldensityfunctions:
μ~N?a??βp?,b??βp??,ζt~N?0,C??μ??.
ThatfunctionalformforattributedriftfollowsColeetal.(2023),whociteArchsmithetal.(2021).
Tospecifydrift,themodelerspecifiesparametersa,b,andc,withabeingthekeyparameter
becauseitdirectlyaffectsthedemandtrend.Theparametersbandcspecifyvariancesfortrendμanddepartureζt,respectively.Ateachiterationofapolicysimulation,anewpriceelasticityisdrawnfromaspecifiedprobabilitydistribution.10Thatselectiondeterminesthevalueofβpthatwillbeusedforthatiteration.Withβpdetermined,trendμisthenselected:Onaverageitwill
haveavalueofa·?βp?,althoughwithavarianceofb·?βp?.Whenahigh(low)priceelasticityisdrawn,forthatiterationconsumerswillbemore(less)responsiveeveryyeartochangesinthe
factorsthataffectconsumers’preferencesforEVsversusICEVs.Withμdetermined,anewζtisdrawnforeachyearofeachiteration,determiningtherandom,annualdeparturefromlong-termattributedriftμ.Thatdeparturewillbezeroonaverage,withavarianceofc·?μ?.
2.3ModelCalibrationAdjustmenttoAttributeDriftTerm
Onaverage,thevalueofattributedriftψtwillchangebya·?βp?eachyear.Thus,theparameteradirectlyinfluencesprojectedsharesofnewEVs.Toprovideanempiricalbasisforthevalueofathatisusedinthemodel,IconsidertrendsinactualU.S.salesoflight-dutyEVsoverthepast
decade.
Plottingnew-EVmarketsharessince2011showsthatEVsaleshavebeenrisingatanincreasingrate(see
Figure1)
.Until2017,themarketsharefornewEVshadbeenincreasingbylessthan0.2percentagepointsperyear,onaverage.Sincethen,thenew-EVsharehasincreasedbyabout1percentagepointperyear,andithasrisenevenmorerapidlysince2020.Therelationship
betweenEVmarketshareandyeariswelldescribedbyaquadratictrendline.
10ThatdistributionreflectstherangeofestimatedEVpriceelasticitiesintherefereedstudiesCBOreliedonforthoseestimates(see
AppendixA)
.
8
Figure1.
MarketShareofNewPlug-inEVs,WithQuadraticTrendLine
Percent
25
20
15
5
0
y=0.0913x2-0.7107x+1.5144
Historical-Growthscenario
203
20112015202020250
Datasource:CongressionalBudgetOffice,usingdatafromArgonneNationalLaboratory,EnergySystemsandInfrastructureAnalysisDivision.See
/publication/58964#data.
EV=electricvehicle.
Fittingaquadraticcurvetonew-EVmarketsharessince2011yieldstheequation
EVshare=1.514–0.711*years+0.091*years2.
Thetrendl
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 排水管網(wǎng)更新改造項(xiàng)目投資預(yù)算
- 2024工業(yè)品購(gòu)買(mǎi)合同范文
- 2024中央空調(diào)安裝合同范本
- S-plus-Marmesin-Standard-生命科學(xué)試劑-MCE
- Sodium-sulfite-Standard-生命科學(xué)試劑-MCE
- SJ26-生命科學(xué)試劑-MCE
- 電商行業(yè):2021抖音電商商家自播白皮書(shū)
- 觸電應(yīng)急處理措施
- 火災(zāi)應(yīng)急知識(shí)
- 有關(guān)讀書(shū)的建議書(shū)范文(33篇)
- 河南省周口市川匯區(qū)2024-2025學(xué)年八年級(jí)上學(xué)期期中質(zhì)量監(jiān)測(cè)地理試卷
- 2024年新人教版一年級(jí)數(shù)學(xué)上冊(cè)第4單元《第1課時(shí) 10的再認(rèn)識(shí)》課件
- 2024年檢察院招錄書(shū)記員考試法律基礎(chǔ)知識(shí)及答案
- 21 小圣施威降大圣 公開(kāi)課一等獎(jiǎng)創(chuàng)新教案
- 初中數(shù)學(xué)教學(xué)“教-學(xué)-評(píng)”一體化研究
- 病例報(bào)告表(樣板)
- 廣成儀制藥王正朝全集
- 已解密_彩盒性能技術(shù)規(guī)范
- 【芝麻灰】石材檢測(cè)報(bào)告
- 抗美援越烈士們永垂不朽
- 2021年村法制宣傳臺(tái)賬(替換圖片 拿來(lái)即用)
評(píng)論
0/150
提交評(píng)論