版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2021-2022學年黑龍江省大慶市龍鳳區(qū)七年級第一學期期中數(shù)學試卷(五四學制)一、選擇題(本大題共10小題,共30.0分)1.清代?袁枚的一首詩《苔》中的詩句:“白日不到處,青春恰自來.苔花如米小,也學牡丹開.”若苔花的花粉直徑約為0.0000084米,則數(shù)據(jù)0.0000084用科學記數(shù)法表示為()A.8.4×10﹣5 B.8.4×10﹣6 C.84×10﹣7 D.8.4×1062.下列運算正確的是()A.a(chǎn)+2a=3a2 B.a(chǎn)2?a3=a5 C.(ab)3=ab3 D.(﹣a3)2=﹣a63.下列命題中,是真命題的是()A.同位角相等 B.同角的余角相等 C.相等的角是對頂角 D.有且只有一條直線與已知直線垂直4.如圖,AD是Rt△ABC的斜邊BC上的高,則圖中與∠B互余的角有()A.1個 B.2個 C.3個 D.4個5.如圖,直線a,b被直線c,d所截.下列條件能判定a∥b的是()A.∠1=∠3 B.∠2+∠4=180° C.∠4=∠5 D.∠1=∠26.如圖,用尺規(guī)作圖作∠AOC=∠AOB的第一步是以點O為圓心,以任意長為半徑畫?、伲謩e交OA、OB于點E、F,那么第二步的作圖痕跡②的作法是()A.以點F為圓心,OE長為半徑畫弧 B.以點F為圓心,EF長為半徑畫弧 C.以點E為圓心,OE長為半徑畫弧 D.以點E為圓心,EF長為半徑畫弧7.某學生上學路線如圖所示,他總共拐了三次彎,最后行車路線與開始的路線相互平行,已知第一次轉(zhuǎn)過的角度,第三次轉(zhuǎn)過的角度,則第二次拐彎角(∠1)的度數(shù)是()A.55° B.70° C.80° D.90°8.記x=(1+2)(1+22)(1+24)(1+28)…(1+2n),且x+1=2128,則n=()A.128 B.32 C.64 D.169.如圖,將四邊形紙片ABCD沿PR翻折得到三角形PC′R,恰好C′P∥AB,C′R∥AD.若∠B=120°,∠D=50°,則∠C=()A.85° B.95° C.90° D.80°10.下列有四個結論,其中正確的是()①若(x﹣1)x+1=1,則x只能是2;②若(x﹣1)(x2+ax+1)的運算結果中不含x2項,則a=1③若a+b=10,ab=2,則a﹣b=2④若4x=a,8y=b,則22x﹣3y可表示為A.①②③④ B.②③④ C.①③④ D.②④二、填空題(本大題共10小題,共30.0分)11.已知∠A=46°28',則∠A的補角=.12.如圖,直線AB、CD相交于點O,OE⊥AB,垂足為點O,∠COE:∠BOD=2:3,則∠AOD=.13.如果x2+2(m﹣1)x+25是一個完全平方式,那么m的值為.14.若4m=16,2n=8,則22m﹣n=.15.已知x﹣=7,則x2+=.16.請看楊輝三角(1),并觀察等式(2)根據(jù)前面各式的規(guī)律,則你猜想(a+b)6的展開式中含a2b4項的系數(shù)是.17.如圖所示,在三角形ABC中,已知BC=16,高AD=10,動點Q由點C沿CB向點B移動(不與點B重合).設CQ的長為x,三角形ACQ的面積為S,則S與x之間的關系式為.18.已知x=2m+1,y=3+4m,試用含x的代數(shù)式表示y,則y=.19.已知(2021﹣a)2+(a﹣2020)2=7,則代數(shù)式(2021﹣a)(a﹣2020)的值是.20.甲、乙兩人在一條筆直的道路上相向而行,甲騎自行車從A地到B地,乙駕車從B地到A地,他們分別以不同的速度勻速行駛,已知甲先出發(fā)6分鐘后,乙才出發(fā),在整個過程中,甲、乙兩人的距離y(千米)與甲出發(fā)的時間x(分)之間的關系如圖所示,當乙到達終點A時,甲還需分鐘到達終點B.三、計算題(本大題共1小題,共15.0分)21.計算:(1);(2)a?a2?a3+(﹣2a3)2﹣a8÷a2;(3)20212﹣2020×2022;(4)先化簡,再求值:[(x+3y)(x﹣3y)﹣(x﹣y)2]÷(﹣2y),其中|x+1|+y2﹣4y=﹣4.(5)已知x2﹣5x﹣4=0,求代數(shù)式(x+2)(x﹣2)﹣(2x﹣1)(x﹣2)的值.四、解答題(本大題共7小題,共45.0分)22.如圖,已知EF∥AD,∠1=∠2.試說明∠DGA+∠BAC=180°.請將下面的說明過程填寫完整.解:∵EF∥AD,(已知)∴∠2=.().又∵∠1=∠2,(已知)∴∠1=∠3,().∴AB∥,()∴∠DGA+∠BAC=180°.()23.長方形的一邊長是16,其鄰邊長為x,周長是y,面積為S.(1)寫出x和y之間的關系式;(2)寫出x和S之間的關系式;(3)當S=160時,x等于多少?y等于多少?(4)當x增加2時,y增加多少?S增加多少?24.已知一角的兩邊與另一個角的兩邊平行,分別結合下圖,試探索這兩個角之間的關系,并證明你的結論.(1)AB∥EF,BC∥DE.∠1與∠2的關系是:.(2)AB∥EF,BC∥DE.∠1與∠2的關系是:.(3)經(jīng)過上述證明,我們可以得到一個真命題:如果,那么.(4)若兩個角的兩邊互相平行,且一個角比另一個角的2倍少30°,則這兩個角分別是多少度?25.將長為40cm、寬為15cm的長方形白紙,按如圖所示的方法黏合起來,黏合部分寬為5cm.(1)根據(jù)圖,將表格補充完整:白紙張數(shù)12345…紙條長度/cm40110145…(2)設x張白紙黏合后的總長度為ycm,則y與x之間的關系式是什么?(3)你認為白紙黏合起來總長度可能為2020cm嗎?為什么?26.已知:如圖,EF∥CD,∠1+∠2=180°.(1)判斷GD與CA的位置關系,并說明理由.(2)若CD平分∠ACB,DG平分∠CDB,且∠A=40°,求∠ACB的度數(shù).27.已知動點P以2cm/s的速度沿圖1所示的邊框從B—C—D—E—F—A的路徑運動,記三角形ABP的面積為S(cm2),S與運動時間t(s)的關系如圖2所示,若AB=6cm,請回答下列問題:(1)圖1中BC=cm,CD=cm,DE=cm;(2)求圖2中m,n的值.28.如圖1,MN∥PQ,直線AD與MN、PQ分別交于點A、D,點B在直線PQ上,過點B作BG⊥AD,垂足為點G.(1)求證:∠MAG+∠PBG=90°;(2)若點C在線段AD上(不與A、D、G重合),連接BC,∠MAG和∠PBC的平分線交于點H,請在圖2中補全圖形,猜想并證明∠CBG與∠AHB的數(shù)量關系;(3)若直線AD的位置如圖3所示,(2)中的結論是否成立?若成立,請證明;若不成立,請直接寫出∠CBG與∠AHB的數(shù)量關系.
參考答案一、選擇題(本大題共10小題,共30.0分)1.清代?袁枚的一首詩《苔》中的詩句:“白日不到處,青春恰自來.苔花如米小,也學牡丹開.”若苔花的花粉直徑約為0.0000084米,則數(shù)據(jù)0.0000084用科學記數(shù)法表示為()A.8.4×10﹣5 B.8.4×10﹣6 C.84×10﹣7 D.8.4×106【分析】絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10﹣n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.解:0.0000084=8.4×10﹣6,故選:B.2.下列運算正確的是()A.a(chǎn)+2a=3a2 B.a(chǎn)2?a3=a5 C.(ab)3=ab3 D.(﹣a3)2=﹣a6【分析】利用合并同類項、冪的乘方、積的乘方以及同底數(shù)冪的乘法的計算法則進行計算即可.解:a+2a=3a,因此選項A不符合題意;a2?a3=a2+3=a5,因此選項B符合題意;(ab)3=a3b3,因此選項C不符合題意;(﹣a3)2=a6,因此選項D不符合題意;故選:B.3.下列命題中,是真命題的是()A.同位角相等 B.同角的余角相等 C.相等的角是對頂角 D.有且只有一條直線與已知直線垂直【分析】分析是否為真命題,需要分別分析各題設是否能推出結論,從而利用排除法得出答案.解:A、兩直線平行,同位角相等,故此選項錯誤;B、同角的余角相等,故此選項正確;C、相等的角不一定是對頂角,故此選項錯誤;D、過直線外一點,有且只有一條直線與已知直線垂直,故此選項錯誤.故選:B.4.如圖,AD是Rt△ABC的斜邊BC上的高,則圖中與∠B互余的角有()A.1個 B.2個 C.3個 D.4個【分析】根據(jù)三角形內(nèi)角和定理求出∠B+∠C=90°,∠B+∠BAD=90°,即可得出選項.解:∵AD是Rt△ABC的斜邊BC上的高,∴∠BAC=90°,∠ADC=∠ADB=90°,∴∠B+∠C=90°,∠B+∠BAD=90°,即∠C和∠BAD,2個,故選:B.5.如圖,直線a,b被直線c,d所截.下列條件能判定a∥b的是()A.∠1=∠3 B.∠2+∠4=180° C.∠4=∠5 D.∠1=∠2【分析】直接利用平行線的判定方法進而分析得出答案.解:A、當∠1=∠3時,c∥d,故此選項不合題意;B、當∠2+∠4=180°時,c∥d,故此選項不合題意;C、當∠4=∠5時,c∥d,故此選項不合題意;D、當∠1=∠2時,a∥b,故此選項符合題意;故選:D.6.如圖,用尺規(guī)作圖作∠AOC=∠AOB的第一步是以點O為圓心,以任意長為半徑畫?、?,分別交OA、OB于點E、F,那么第二步的作圖痕跡②的作法是()A.以點F為圓心,OE長為半徑畫弧 B.以點F為圓心,EF長為半徑畫弧 C.以點E為圓心,OE長為半徑畫弧 D.以點E為圓心,EF長為半徑畫弧【分析】根據(jù)作一個角等于已知角的作法即可得出結論.解:用尺規(guī)作圖作∠AOC=∠AOB的第一步是以點O為圓心,以任意長為半徑畫?、?,分別交OA、OB于點E、F,第二步的作圖痕跡②的作法是以點E為圓心,EF長為半徑畫?。蔬x:D.7.某學生上學路線如圖所示,他總共拐了三次彎,最后行車路線與開始的路線相互平行,已知第一次轉(zhuǎn)過的角度,第三次轉(zhuǎn)過的角度,則第二次拐彎角(∠1)的度數(shù)是()A.55° B.70° C.80° D.90°【分析】延長ED交BF于C,依據(jù)BA∥DE,即可得到∠BCD=∠B=120°,∠FCD=60°,再根據(jù)∠FDE是△CDF的外角,即可得出∠1=∠FDE﹣∠DCF=150°﹣60°=90°.解:如圖,延長ED交BF于C,∵BA∥DE,∴∠BCD=∠B=120°,∠FCD=60°,又∵∠FDE是△CDF的外角,∴∠1=∠FDE﹣∠DCF=150°﹣60°=90°,故選:D.8.記x=(1+2)(1+22)(1+24)(1+28)…(1+2n),且x+1=2128,則n=()A.128 B.32 C.64 D.16【分析】利用平方差公式,配上因式(2﹣1),將x的結果化簡為22n﹣1,再代入計算即可.解:∵x=(1+2)(1+22)(1+24)(1+28)…(1+2n)=(2﹣1)(2+1)(1+22)(1+24)(1+28)…(1+2n)=(22﹣1)(1+22)(1+24)(1+28)…(1+2n)=…=22n﹣1,又∵x+1=2128,∴22n﹣1+1=2128,∴n=64,故選:C.9.如圖,將四邊形紙片ABCD沿PR翻折得到三角形PC′R,恰好C′P∥AB,C′R∥AD.若∠B=120°,∠D=50°,則∠C=()A.85° B.95° C.90° D.80°【分析】根據(jù)折疊得出∠CRP=∠C′RP,∠CPR=∠C′PR,根據(jù)平行線的性質(zhì)得出∠C′RC=∠D=50°,∠C′PC=∠B=120°,求出∠CRP=∠C′RP=25°,∠CPR=∠C′PR=60°,即可得出答案.解:∵將紙片ABCD沿PR翻折得到△PC′R,∴∠CRP=∠C′RP,∠CPR=∠C′PR,∵C′P∥AB,C′R∥AD,∠B=120°,∠D=50°,∴∠C′RC=∠D=50°,∠C′PC=∠B=120°,∴∠CRP=∠C′RP=25°,∠CPR=∠C′PR=60°,∴∠C=180°﹣∠CRP﹣∠CPR=95°,故選:B.10.下列有四個結論,其中正確的是()①若(x﹣1)x+1=1,則x只能是2;②若(x﹣1)(x2+ax+1)的運算結果中不含x2項,則a=1③若a+b=10,ab=2,則a﹣b=2④若4x=a,8y=b,則22x﹣3y可表示為A.①②③④ B.②③④ C.①③④ D.②④【分析】①根據(jù)不等于1的數(shù)的零次冪也為1,可判斷是否正確;再用排除法判斷A和C錯誤,然后只需判斷③是否正確即可.解:①若(x﹣1)x+1=1,則x可以為﹣1,此時(﹣2)0=1,故①錯誤,從而排除選項A和C;由于選項B和D均含有②④,故只需考查③∵(a﹣b)2=(a+b)2﹣4ab=102﹣4×2=92∴a﹣b=±,故③錯誤.故選:D.二、填空題(本大題共10小題,共30.0分)11.已知∠A=46°28',則∠A的補角=133°32′.【分析】根據(jù)互為補角的定義求解即可.解:∠A的補角=180°﹣∠A=180°﹣46°28′=133°32′,故答案為:133°32′.12.如圖,直線AB、CD相交于點O,OE⊥AB,垂足為點O,∠COE:∠BOD=2:3,則∠AOD=126°.【分析】利用垂直的定義結合∠COE:∠BOD=2:3可求∠BOD,再根據(jù)鄰補角的定義得出答案.解:∵OE⊥AB,∴∠BOE=90°,∴∠COE+∠BOD=90°,∵∠COE:∠BOD=2:3,∴∠BOD=54°,∴∠AOD=126°.故答案為:126°.13.如果x2+2(m﹣1)x+25是一個完全平方式,那么m的值為m=6或﹣4.【分析】利用完全平方公式的特征判斷即可確定出m的值.解:∵x2+2(m﹣1)x+25是一個完全平方式,∴2(m﹣1)=±10,解得:m=6或﹣4.故答案是:m=6或﹣4.14.若4m=16,2n=8,則22m﹣n=2.【分析】利用同底數(shù)冪的除法法則的逆運算得到22m﹣n=22m÷2n,然后把22m=4m=16,2n=8代入計算即可.解:因為22m=4m=16,2n=8,所以22m﹣n=22m÷2n=16÷8=2.故答案為:2.15.已知x﹣=7,則x2+=51.【分析】直接利用完全平方公式將已知條件變形求出即可.解:∵x﹣=7,∴(x﹣)2=49,∴x2+=51.故答案為:51.16.請看楊輝三角(1),并觀察等式(2)根據(jù)前面各式的規(guī)律,則你猜想(a+b)6的展開式中含a2b4項的系數(shù)是15.【分析】第五行系數(shù)規(guī)律依次是:1,5,10,10,5,1;第六行系數(shù)規(guī)律依次是:1,6,15,20,15,6,1,(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6,由此解答即可.解:根據(jù)題意,第六行系數(shù)規(guī)律依次是:1,6,15,20,15,6,1,∴(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6,∴展開式中含a2b4項的系數(shù)是:15.故答案為:15.17.如圖所示,在三角形ABC中,已知BC=16,高AD=10,動點Q由點C沿CB向點B移動(不與點B重合).設CQ的長為x,三角形ACQ的面積為S,則S與x之間的關系式為S=5x(0≤x<16).【分析】根據(jù)三角形的面積公式,可得答案.解:由題意,得S=CQ?AD=5x(0≤x<16),故答案為:S=5x(0≤x<16).18.已知x=2m+1,y=3+4m,試用含x的代數(shù)式表示y,則y=x2﹣2x+4.【分析】將4m變形,轉(zhuǎn)化為關于2m的形式,然后再代入整理即可.解:∵4m=22m=(2m)2,x=2m+1,∴2m=x﹣1,∵y=3+4m,∴y=(x﹣1)2+3,即y=x2﹣2x+4.19.已知(2021﹣a)2+(a﹣2020)2=7,則代數(shù)式(2021﹣a)(a﹣2020)的值是﹣3.【分析】設2021﹣a=x,a﹣2020=y(tǒng),根據(jù)條件可知x2+y2=7,x+y=1,利用完全平方公式計算xy即可.解:設2021﹣a=x,a﹣2020=y(tǒng),則x2+y2=7,x+y=1,∴原式=xy=[(x+y)2﹣(x2+y2)]=×(1﹣7)=×(﹣6)=﹣3,故答案為:﹣3.20.甲、乙兩人在一條筆直的道路上相向而行,甲騎自行車從A地到B地,乙駕車從B地到A地,他們分別以不同的速度勻速行駛,已知甲先出發(fā)6分鐘后,乙才出發(fā),在整個過程中,甲、乙兩人的距離y(千米)與甲出發(fā)的時間x(分)之間的關系如圖所示,當乙到達終點A時,甲還需78分鐘到達終點B.【分析】根據(jù)路程與時間的關系,可得甲乙的速度,根據(jù)相遇前甲行駛的路程除以乙行駛的速度,可得乙到達A站需要的時間,根據(jù)相遇前乙行駛的路程除以甲行駛的速度,可得甲到達B站需要的時間,再根據(jù)有理數(shù)的減法,可得答案.解:由縱坐標看出甲先行駛了1千米,由橫坐標看出甲行駛1千米用了6分鐘,甲的速度是1÷6=千米/分鐘,由縱坐標看出AB兩地的距離是16千米,設乙的速度是x千米/分鐘,由題意,得10x+16×=16,解得x=千米/分鐘,相遇后乙到達A站還需(16×)÷=2分鐘,相遇后甲到達B站還需(10×)÷=80分鐘,當乙到達終點A時,甲還需80﹣2=78分鐘到達終點B,故答案為:78.三、計算題(本大題共1小題,共15.0分)21.計算:(1);(2)a?a2?a3+(﹣2a3)2﹣a8÷a2;(3)20212﹣2020×2022;(4)先化簡,再求值:[(x+3y)(x﹣3y)﹣(x﹣y)2]÷(﹣2y),其中|x+1|+y2﹣4y=﹣4.(5)已知x2﹣5x﹣4=0,求代數(shù)式(x+2)(x﹣2)﹣(2x﹣1)(x﹣2)的值.【分析】(1)先根據(jù)絕對值,負整數(shù)指數(shù)冪,零指數(shù)冪,有理數(shù)的乘方進行計算,再根據(jù)有理數(shù)的加減法則進行計算即可;(2)先根據(jù)積的乘方進行計算,再根據(jù)整式的乘除法則進行計算,最后合并同類項即可;(3)先變形,再根據(jù)平方差公式進行計算,再求出答案即可;(4)先根據(jù)平方差公式和完全平方公式進行計算,再合并同類項,根據(jù)整式的除法進行計算,求出x、y的值,再代入求出答案即可;(5)先根據(jù)平方差公式和多項式乘以單項式進行計算,再合并同類項,求出x2﹣5x=4,最后代入求出即可.解:(1)原式=3﹣4+1﹣1=﹣1;(2)原式=a6+4a6﹣a6=4a6;(3)原式=20212﹣(2021﹣1)×(2021+1)=20212﹣(20212﹣1)=20212﹣20212+1=1;(4)原式=(x2﹣9y2﹣x2+2xy﹣y2)÷(﹣2y)=(﹣10y2+2xy)÷(﹣2y)=5y﹣x,由|x+1|+y2﹣4y=﹣4,|x+1|+y2﹣4y+4=0,|x+1|+(y﹣2)2=0,所以x+1=0,y﹣2=0,解得:x=﹣1,y=2,所以原式=5×2﹣(﹣1)=11;(5)(x+2)(x﹣2)﹣(2x﹣1)(x﹣2)=x2﹣4﹣2x2+4x+x﹣2=﹣x2+5x﹣6,∵x2﹣5x﹣4=0,∴x2﹣5x=4,當x2﹣5x=4時,原式=﹣4﹣6=﹣10.四、解答題(本大題共7小題,共45.0分)22.如圖,已知EF∥AD,∠1=∠2.試說明∠DGA+∠BAC=180°.請將下面的說明過程填寫完整.解:∵EF∥AD,(已知)∴∠2=∠3.(兩直線平行,同位角相等).又∵∠1=∠2,(已知)∴∠1=∠3,(等量代換).∴AB∥DG,(內(nèi)錯角相等,兩直線平行)∴∠DGA+∠BAC=180°.(兩直線平行,同旁內(nèi)角互補)【分析】分別根據(jù)平行線的性質(zhì)及平行線的判定定理解答即可.解:∵EF∥AD,(已知)∴∠2=∠3.(兩直線平行,同位角相等).又∵∠1=∠2,(已知)∴∠1=∠3,(等量代換).∴AB∥DG,(內(nèi)錯角相等,兩直線平行)∴∠DGA+∠BAC=180°(兩直線平行,同旁內(nèi)角互補).故答案為∠3,兩直線平行,同位角相等,等量代換,DG,內(nèi)錯角相等,兩直線平行,兩直線平行,同旁內(nèi)角互補.23.長方形的一邊長是16,其鄰邊長為x,周長是y,面積為S.(1)寫出x和y之間的關系式;(2)寫出x和S之間的關系式;(3)當S=160時,x等于多少?y等于多少?(4)當x增加2時,y增加多少?S增加多少?【分析】(1)根據(jù)長方形的周長公式得出答案;(2)根據(jù)長方形面積的計算公式得出答案;(3)將S=160代入上述兩個關系式進行計算即可;(4)根據(jù)關系式,分別求出自變量為a和(a+2)所對應的函數(shù)值,得出其變化即可.解:(1)由長方形的周長公式,得y=2(x+16)=2x+32;(2)由長方形的面積公式,得S=16x;(3)當S=160時,即16x=160,∴x=10,當x=10時,y=2×10+32=52.答:當S=160時,x=10,y=52;(4)當x1=a時,S1=16a,y1=2a+32,當x2=a+2時,S2=16a+32,y2=2a+36,∴y2﹣y1=4,S2﹣S1=32,答:當x增加2時,y增加4,S增加32.24.已知一角的兩邊與另一個角的兩邊平行,分別結合下圖,試探索這兩個角之間的關系,并證明你的結論.(1)AB∥EF,BC∥DE.∠1與∠2的關系是:∠1=∠2.(2)AB∥EF,BC∥DE.∠1與∠2的關系是:∠1+∠2=180°.(3)經(jīng)過上述證明,我們可以得到一個真命題:如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等或互補.(4)若兩個角的兩邊互相平行,且一個角比另一個角的2倍少30°,則這兩個角分別是多少度?【分析】(1)根據(jù)兩直線平行,內(nèi)錯角相等,可求出∠1=∠2;(2)根據(jù)兩直線平行,內(nèi)錯角相等,及同旁內(nèi)角互補可求出∠1+∠2=180°;(3)由(1)(2)可列出方程,求出角的度數(shù).解:(1)AB∥EF,BC∥DE,∠1與∠2的關系是:∠1=∠2證明:∵AB∥EF∴∠1=∠BGE∵BC∥DE∴∠2=∠BGE∴∠1=∠2.(2)AB∥EF,BC∥DE.∠1與∠2的關系是:∠1+∠2=180°.證明:∵AB∥EF∴∠1=∠BGE∵BC∥DE∴∠2+∠BGE=180°∴∠1+∠2=180°.(3)經(jīng)過上述證明,我們可以得到一個真命題:如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等或互補.(4)若兩個角的兩邊互相平行,且一個角比另一個角的2倍少30°,則這兩個角分別是多少度?解:設另一個角為x°,列方程得x=2x﹣30或x+2x﹣30=180,故x=30或x=70,所以2x﹣30=30或110,答:這兩個角分別是30°,30°或70°,110°.25.將長為40cm、寬為15cm的長方形白紙,按如圖所示的方法黏合起來,黏合部分寬為5cm.(1)根據(jù)圖,將表格補充完整:白紙張數(shù)12345…紙條長度/cm4075110145180…(2)設x張白紙黏合后的總長度為ycm,則y與x之間的關系式是什么?(3)你認為白紙黏合起來總長度可能為2020cm嗎?為什么?【分析】(1)根據(jù)圖形結合題意可得答案;(2)根據(jù)題意和所給圖形可得出答案;(3)把y=2020代入(2)式時,看x的值是否為整數(shù)即可得到答案.解:(1)2張白紙的總長度為:40+40﹣5=75(cm),5張白紙的部長度為:40+40+40+40+40﹣5﹣5﹣5﹣5=180(cm),故答案為:75,180;(2)∵1張白紙的總長度為:40,2張白紙的總長度為:40+40﹣5=40×2﹣5×1,3張白紙的總長度為:40+40+40﹣5﹣5=40×3﹣5×2,…,∴y=40x﹣5(x﹣1)=35x+5.(3)不可能.理由:令2020=35x+5,解得x≈57.6.因為x為整數(shù),所以總長度不可能為2020cm.26.已知:如圖,EF∥CD,∠1+∠2=180°.(1)判斷GD與CA的位置關系,并說明理由.(2)若CD平分∠ACB,DG平分∠CDB,且∠A=40°,求∠ACB的度數(shù).【分析】(1)根據(jù)平行線的性質(zhì)即可得出∠1+∠ACD=180°,再根據(jù)條件∠1+∠2=180°,即可得到∠ACD=∠2,進而判定AC∥DG.(2)根據(jù)平行線的性質(zhì),得到∠BDG=∠A=40°,根據(jù)三角形外角性質(zhì),即可得到∠ACD=∠BDC﹣∠A=40°,再根據(jù)角平分線的定義,即可得出∠ACB的度數(shù).解:(1)AC∥DG.理由:∵EF∥CD,∴∠1+∠ACD=180°,又∵∠1+∠2=180°,∴∠ACD=∠2,∴AC∥DG.(2)∵AC∥DG,∴∠BDG=∠A=40°,∵DG平分∠CDB,∴∠CDB=2∠BDG=80°,∵∠BDC是△ACD的外角,∴∠ACD=∠BDC﹣∠A=80°﹣40°=40°,∵CD平分∠ACB,∴∠ACB=2∠ACD=80°.27.已知動點P以2cm/s的速度沿圖1所示的邊框從B—C—D—E—F—A的路徑運動,記三角形ABP的面積為S(cm2),S與運動時間t(s)的關系如圖2所示,若AB=6cm,請回答下列問題:(1)圖1中BC=8cm,CD=4cm,DE=6cm;(2)求圖2中m,n的值.【分析】(1)根據(jù)路程=速度×時間,即可解決問題;(2)由圖象可知m的值就是△ABC面積,n的值就是運動的總時間,由此即可解決.解:(1)由圖2可知從B→C運動時間為4s,∴BC=2×4=8(cm),同理CD=2×(6﹣4)=4(cm),DE=2×(9﹣6)=6(cm),故答案為:8,4,6;(2)m=S△ABC=×AB×BC=×6×8=24(cm2),n=(BC+CD+DE+EF+FA)÷2=(BC+DE+AB+AF)÷2=(8+6+6+8+6)÷2=17(s).28.如圖1,MN∥PQ,直線AD與MN、PQ分別交于點A、D,點B在直線P
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 談軍訓心得體會(33篇)
- 食品安全自檢自查制度
- 中專自我總結范文3篇
- 西湖導游詞600字(32篇)
- 山東省聊城市2024-2025學年高一上學期11月期中物理試題
- 江西省贛州市十八縣二十四校2024-2025學年高三上學期期中考試英語試題(含解析)
- 世界的海陸氣候與居民-2024年中考地理總復習易混易錯題(原卷版)
- 語文教學論教案 第一章 語文課程的性質(zhì)、理念及目標
- 個人分期還款協(xié)議范本
- 企業(yè)貸款擔保格式
- 冷庫安全施工方案
- 翻轉(zhuǎn)課堂教學模式與設計
- 《企劃案撰寫》課件
- 2024年五糧液集團公司招聘筆試參考題庫含答案解析
- 《數(shù)據(jù)結構與算法》教案
- 為什么要做好服務
- 工程地質(zhì)調(diào)查規(guī)范
- 凈水設備采購務投標方案技術標
- 第15課《誡子書》課件(共31張)語文七年級上冊
- GB/T 43321-2023銅及銅合金釬焊推薦工藝規(guī)范
- 江蘇省城鎮(zhèn)污水處理廠納管工業(yè)廢水分質(zhì)處理評估技術指南(試行)
評論
0/150
提交評論