高一上冊數(shù)學(xué)知識點總結(jié)(5篇)_第1頁
高一上冊數(shù)學(xué)知識點總結(jié)(5篇)_第2頁
高一上冊數(shù)學(xué)知識點總結(jié)(5篇)_第3頁
高一上冊數(shù)學(xué)知識點總結(jié)(5篇)_第4頁
高一上冊數(shù)學(xué)知識點總結(jié)(5篇)_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1/1高一上冊數(shù)學(xué)知識點總結(jié)(通用5篇)高中以來,同學(xué)們的學(xué)習(xí)任務(wù)日益繁重,作為主科的數(shù)學(xué)更是,如何更有效的學(xué)習(xí)數(shù)學(xué)呢。下面是給大家整理的5篇高一上冊數(shù)學(xué)知識點總結(jié),希望可以啟發(fā)您對于高一上學(xué)期數(shù)學(xué)的寫作思路。

高一上數(shù)學(xué)知識點總結(jié)篇一一、集合有關(guān)概念

1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

2、集合的中元素的三個特性:

1.元素的確定性;2.元素的互異性;3.元素的無序性

說明:對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

集合元素的三個特性使集合本身具有了確定性和整體性。

3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

1.用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

2.集合的表示方法:列舉法與描述法。

二、集合間的基本關(guān)系

1.“包含”關(guān)系—子集

注意:有兩種可能A是B的一部分,;A與B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

2.“相等”關(guān)系

實例:設(shè)A={x|x21=0}B={1,1}“元素相同”

結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

①任何一個集合是它本身的子集。AíA

②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB

③如果AíB,BíC,那么AíC

④如果AíB同時BíA那么A=B

3.不含任何元素的集合叫做空集,記為Φ

規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

三、集合的運(yùn)算

1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集。

記作A∩B,即A∩B={x|x∈A,且x∈B}.

2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B,即A∪B={x|x∈A,或x∈B}.

3、交集與并集的性質(zhì):A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A.

人教版高一數(shù)學(xué)知識點梳理篇二定義:

x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。

范圍:

傾斜角的取值范圍是0°≤α180°。

理解:

注意“兩個方向”:直線向上的方向、x軸的正方向;

規(guī)定當(dāng)直線和x軸平行或重合時,它的傾斜角為0度。

意義:

①直線的傾斜角,體現(xiàn)了直線對x軸正向的傾斜程度;

②在平面直角坐標(biāo)系中,每一條直線都有一個確定的傾斜角;

③傾斜角相同,未必表示同一條直線。

公式:

k=tanα

k0時α∈

k0時α∈

k=0時α=0°

當(dāng)α=90°時k不存在

ax+by+c=0傾斜角為A,

則tanA=a/b,

A=arctan

當(dāng)a≠0時,

傾斜角為90度,即與X軸垂直

高一上冊數(shù)學(xué)知識點歸納總結(jié)篇三一、集合

1.集合的含義

2.集合的中元素的三個特性:

元素的確定性如:世界上最高的山

元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

集合的表示方法:列舉法與描述法。

u注意:常用數(shù)集及其記法:

非負(fù)整數(shù)集記作:N

正整數(shù)集N_或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R

1)列舉法:{a,b,c……}

2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。{x?0?2R|x32},{x|x32}

3)語言描述法:例:{不是直角三角形的三角形}

4)Venn圖:

4、集合的分類:

有限集含有有限個元素的集合

無限集含有無限個元素的集合

空集不含任何元素的集合例:{x|x2=5}

二、集合間的基本關(guān)系

1.“包含”關(guān)系—子集

注意:

有兩種可能A是B的一部分,;A與B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,記作A

2.“相等”關(guān)系:A=B

實例:設(shè)A={x|x21=0}B={1,1}“元素相同則兩集合相等”

即:①任何一個集合是它本身的子集。A_A

②真子集:如果A_B,且A_B那就說集合A是集合B的真子集,記作A

③如果A_B,B_C,那么A_C

④如果A_B同時B_A那么A=B

3.不含任何元素的集合叫做空集,記為Φ

規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

u有n個元素的集合,含有2n個子集,2n1個真子集

二、函數(shù)

1、函數(shù)定義域、值域求法綜合

2.、函數(shù)奇偶性與單調(diào)性問題的解題策略

3、恒成立問題的求解策略

4、反函數(shù)的幾種題型及方法

5、二次函數(shù)根的問題——一題多解

指數(shù)函數(shù)y=a^x

a^a_a^b=a^a+b

^b=a^ab

^a=a^a_b^a

指數(shù)函數(shù)對稱規(guī)律:

1、函數(shù)y=a^x與y=a^x關(guān)于y軸對稱

2、函數(shù)y=a^x與y=a^x關(guān)于x軸對稱

3、函數(shù)y=a^x與y=a^x關(guān)于坐標(biāo)原點對稱為常數(shù)。

2、冪函數(shù)性質(zhì)歸納。

所有的冪函數(shù)在都有定義并且圖象都過點;

三、平面向量

已知兩個從同一點O出發(fā)的兩個向量OA、OB,以O(shè)A、OB為鄰邊作平行四邊形OACB,則以O(shè)為起點的對角線OC就是向量OA、OB的和,這種計算法則叫做向量加法的平行四邊形法則。對于零向量和任意向量a,有:0+a=a+0=a。|a+b|≤|a|+|b|。向量的加法滿足所有的加法運(yùn)算定律。數(shù)乘運(yùn)算實數(shù)λ與向量a的積是一個向量,這種運(yùn)算叫做向量的數(shù)乘,記作λa,|λa|=|λ||a|,當(dāng)λ0時,λa的方向和a的方向相同,當(dāng)λ0時,λa的方向和a的方向相反,當(dāng)λ=0時,λa=0。設(shè)λ、μ是實數(shù),那么:a=λa=λaμaλ=λa±λba==λ。向量的加法運(yùn)算、減法運(yùn)算、數(shù)乘運(yùn)算統(tǒng)稱線性運(yùn)算。向量的數(shù)量積已知兩個非零向量a、b,那么|a||b|cosθ叫做a與b的數(shù)量積或內(nèi)積,記作a?b,θ是a與b的夾角,|a|cosθ叫做向量a在b方向上的投影。零向量與任意向量的數(shù)量積為0。a?b的幾何意義:數(shù)量積a?b等于a的長度|a|與b在a的方向上的投影|b|cosθ的乘積。兩個向量的數(shù)量積等于它們對應(yīng)坐標(biāo)的乘積的和。

高一上冊數(shù)學(xué)必修一知識點梳理篇四兩個平面的位置關(guān)系:

兩個平面互相平行的定義:空間兩平面沒有公共點

兩個平面的位置關(guān)系:

兩個平面平行沒有公共點;兩個平面相交有一條公共直線。

a、平行

兩個平面平行的判定定理:如果一個平面內(nèi)有兩條相交直線都平行于另一個平面,那么這兩個平面平行。

兩個平面平行的性質(zhì)定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。

b、相交

二面角

半平面:平面內(nèi)的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。

二面角:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

二面角的棱:這一條直線叫做二面角的棱。

二面角的面:這兩個半平面叫做二面角的面。

二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

直二面角:平面角是直角的二面角叫做直二面角。

esp.兩平面垂直

兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥

兩平面垂直的判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直

兩個平面垂直的性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于交線的直線垂直于另一個平面。

高一數(shù)學(xué)知識點梳理篇五反比例函數(shù)

形如y=k/x的函數(shù),叫做反比例函數(shù)。

自變量x的。取值范圍是不等于0的一切實數(shù)。

反比例函數(shù)圖像性質(zhì):

反比例函數(shù)的圖像為雙曲線。

由于反比例函數(shù)屬于奇函數(shù),有f=f,圖像關(guān)于原點對稱。

另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標(biāo)軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

如圖,上面給出了k分別為正和負(fù)時的函數(shù)圖像。

當(dāng)K0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

當(dāng)K0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論