![2022屆浙江省嘉興市桐鄉(xiāng)高級中學高考沖刺模擬數(shù)學試題含解析_第1頁](http://file4.renrendoc.com/view8/M02/28/0F/wKhkGWa8FFaAR2wVAAG5dJrxXwY068.jpg)
![2022屆浙江省嘉興市桐鄉(xiāng)高級中學高考沖刺模擬數(shù)學試題含解析_第2頁](http://file4.renrendoc.com/view8/M02/28/0F/wKhkGWa8FFaAR2wVAAG5dJrxXwY0682.jpg)
![2022屆浙江省嘉興市桐鄉(xiāng)高級中學高考沖刺模擬數(shù)學試題含解析_第3頁](http://file4.renrendoc.com/view8/M02/28/0F/wKhkGWa8FFaAR2wVAAG5dJrxXwY0683.jpg)
![2022屆浙江省嘉興市桐鄉(xiāng)高級中學高考沖刺模擬數(shù)學試題含解析_第4頁](http://file4.renrendoc.com/view8/M02/28/0F/wKhkGWa8FFaAR2wVAAG5dJrxXwY0684.jpg)
![2022屆浙江省嘉興市桐鄉(xiāng)高級中學高考沖刺模擬數(shù)學試題含解析_第5頁](http://file4.renrendoc.com/view8/M02/28/0F/wKhkGWa8FFaAR2wVAAG5dJrxXwY0685.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實數(shù),則的大小關系是()A. B. C. D.2.已知為虛數(shù)單位,若復數(shù),,則A. B.C. D.3.已知函數(shù)為奇函數(shù),則()A. B.1 C.2 D.34.已知,函數(shù),若函數(shù)恰有三個零點,則()A. B.C. D.5.已知函數(shù),當時,恒成立,則的取值范圍為()A. B. C. D.6.若(是虛數(shù)單位),則的值為()A.3 B.5 C. D.7.下列四個結論中正確的個數(shù)是(1)對于命題使得,則都有;(2)已知,則(3)已知回歸直線的斜率的估計值是2,樣本點的中心為(4,5),則回歸直線方程為;(4)“”是“”的充分不必要條件.A.1 B.2 C.3 D.48.設為銳角,若,則的值為()A. B. C. D.9.已知是虛數(shù)單位,則復數(shù)()A. B. C.2 D.10.設全集,集合,則=()A. B. C. D.11.將4名大學生分配到3個鄉(xiāng)鎮(zhèn)去當村官,每個鄉(xiāng)鎮(zhèn)至少一名,則不同的分配方案種數(shù)是()A.18種 B.36種 C.54種 D.72種12.設為虛數(shù)單位,則復數(shù)在復平面內(nèi)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.已知為拋物線:的焦點,過作兩條互相垂直的直線,,直線與交于、兩點,直線與交于、兩點,則的最小值為__________.14.展開式中項系數(shù)為160,則的值為______.15.已知函數(shù),則不等式的解集為____________.16.已知點是拋物線的焦點,,是該拋物線上的兩點,若,則線段中點的縱坐標為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知分別是的內(nèi)角的對邊,且.(Ⅰ)求.(Ⅱ)若,,求的面積.(Ⅲ)在(Ⅱ)的條件下,求的值.18.(12分)已知矩陣,且二階矩陣M滿足AMB,求M的特征值及屬于各特征值的一個特征向量.19.(12分)在平面直角坐標系xOy中,以O為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程為;直線l的參數(shù)方程為(t為參數(shù)).直線l與曲線C分別交于M,N兩點.(1)寫出曲線C的直角坐標方程和直線l的普通方程;(2)若點P的極坐標為,,求的值.20.(12分)如圖,在四面體中,.(1)求證:平面平面;(2)若,求四面體的體積.21.(12分)已知集合,集合.(1)求集合;(2)若,求實數(shù)的取值范圍.22.(10分)已知函數(shù),.(1)求函數(shù)的極值;(2)當時,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
根據(jù),利用指數(shù)函數(shù)對數(shù)函數(shù)的單調(diào)性即可得出.【詳解】解:∵,∴,,.∴.故選:B.【點睛】本題考查了指數(shù)函數(shù)對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎題.2.B【解析】
由可得,所以,故選B.3.B【解析】
根據(jù)整體的奇偶性和部分的奇偶性,判斷出的值.【詳解】依題意是奇函數(shù).而為奇函數(shù),為偶函數(shù),所以為偶函數(shù),故,也即,化簡得,所以.故選:B【點睛】本小題主要考查根據(jù)函數(shù)的奇偶性求參數(shù)值,屬于基礎題.4.C【解析】
當時,最多一個零點;當時,,利用導數(shù)研究函數(shù)的單調(diào)性,根據(jù)單調(diào)性畫函數(shù)草圖,根據(jù)草圖可得.【詳解】當時,,得;最多一個零點;當時,,,當,即時,,在,上遞增,最多一個零點.不合題意;當,即時,令得,,函數(shù)遞增,令得,,函數(shù)遞減;函數(shù)最多有2個零點;根據(jù)題意函數(shù)恰有3個零點函數(shù)在上有一個零點,在,上有2個零點,如圖:且,解得,,.故選.【點睛】遇到此類問題,不少考生會一籌莫展.由于方程中涉及兩個參數(shù),故按“一元化”想法,逐步分類討論,這一過程中有可能分類不全面、不徹底.5.A【解析】
分析可得,顯然在上恒成立,只需討論時的情況即可,,然后構造函數(shù),結合的單調(diào)性,不等式等價于,進而求得的取值范圍即可.【詳解】由題意,若,顯然不是恒大于零,故.,則在上恒成立;當時,等價于,因為,所以.設,由,顯然在上單調(diào)遞增,因為,所以等價于,即,則.設,則.令,解得,易得在上單調(diào)遞增,在上單調(diào)遞減,從而,故.故選:A.【點睛】本題考查了不等式恒成立問題,利用函數(shù)單調(diào)性是解決本題的關鍵,考查了學生的推理能力,屬于基礎題.6.D【解析】
直接利用復數(shù)的模的求法的運算法則求解即可.【詳解】(是虛數(shù)單位)可得解得本題正確選項:【點睛】本題考查復數(shù)的模的運算法則的應用,復數(shù)的模的求法,考查計算能力.7.C【解析】
由題意,(1)中,根據(jù)全稱命題與存在性命題的關系,即可判定是正確的;(2)中,根據(jù)正態(tài)分布曲線的性質(zhì),即可判定是正確的;(3)中,由回歸直線方程的性質(zhì)和直線的點斜式方程,即可判定是正確;(4)中,基本不等式和充要條件的判定方法,即可判定.【詳解】由題意,(1)中,根據(jù)全稱命題與存在性命題的關系,可知命題使得,則都有,是錯誤的;(2)中,已知,正態(tài)分布曲線的性質(zhì),可知其對稱軸的方程為,所以是正確的;(3)中,回歸直線的斜率的估計值是2,樣本點的中心為(4,5),由回歸直線方程的性質(zhì)和直線的點斜式方程,可得回歸直線方程為是正確;(4)中,當時,可得成立,當時,只需滿足,所以“”是“”成立的充分不必要條件.【點睛】本題主要考查了命題的真假判定及應用,其中解答中熟記含有量詞的否定、正態(tài)分布曲線的性質(zhì)、回歸直線方程的性質(zhì),以及基本不等式的應用等知識點的應用,逐項判定是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.8.D【解析】
用誘導公式和二倍角公式計算.【詳解】.故選:D.【點睛】本題考查誘導公式、余弦的二倍角公式,解題關鍵是找出已知角和未知角之間的聯(lián)系.9.A【解析】
根據(jù)復數(shù)的基本運算求解即可.【詳解】.故選:A【點睛】本題主要考查了復數(shù)的基本運算,屬于基礎題.10.A【解析】
先求得全集包含的元素,由此求得集合的補集.【詳解】由解得,故,所以,故選A.【點睛】本小題主要考查補集的概念及運算,考查一元二次不等式的解法,屬于基礎題.11.B【解析】
把4名大學生按人數(shù)分成3組,為1人、1人、2人,再把這三組分配到3個鄉(xiāng)鎮(zhèn)即得.【詳解】把4名大學生按人數(shù)分成3組,為1人、1人、2人,再把這三組分配到3個鄉(xiāng)鎮(zhèn),則不同的分配方案有種.故選:.【點睛】本題考查排列組合,屬于基礎題.12.A【解析】
利用復數(shù)的除法運算化簡,求得對應的坐標,由此判斷對應點所在象限.【詳解】,對應的點的坐標為,位于第一象限.故選:A.【點睛】本小題主要考查復數(shù)除法運算,考查復數(shù)對應點所在象限,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.16.【解析】由題意可知拋物線的焦點,準線為設直線的解析式為∵直線互相垂直∴的斜率為與拋物線的方程聯(lián)立,消去得設點由跟與系數(shù)的關系得,同理∵根據(jù)拋物線的性質(zhì),拋物線上的點到焦點的距離等于到準線的距離∴,同理∴,當且僅當時取等號.故答案為16點睛:(1)與拋物線有關的最值問題,一般情況下都與拋物線的定義有關.利用定義可將拋物線上的點到焦點的距離轉化為到準線的距離,可以使運算化繁為簡.“看到準線想焦點,看到焦點想準線”,這是解決拋物線焦點弦有關問題的重要途徑;(2)圓錐曲線中的最值問題,可利用基本不等式求解,但要注意不等式成立的條件.14.-2【解析】
表示該二項式的展開式的第r+1項,令其指數(shù)為3,再代回原表達式構建方程求得答案.【詳解】該二項式的展開式的第r+1項為令,所以,則故答案為:【點睛】本題考查由二項式指定項的系數(shù)求參數(shù),屬于簡單題.15.【解析】
,,分類討論即可.【詳解】由已知,,,若,則或解得或,所以不等式的解集為.故答案為:【點睛】本題考查分段函數(shù)的應用,涉及到解一元二次不等式,考查學生的計算能力,是一道中檔題.16.2【解析】
運用拋物線的定義將拋物線上的點到焦點距離等于到準線距離,然后求解結果.【詳解】拋物線的標準方程為:,則拋物線的準線方程為,設,,則,所以,則線段中點的縱坐標為.故答案為:【點睛】本題考查了拋物線的定義,由拋物線定義將點到焦點距離轉化為點到準線距離,需要熟練掌握定義,并能靈活運用,本題較為基礎.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ);(Ⅱ);(Ⅲ).【解析】
(Ⅰ)由已知結合正弦定理先進行代換,然后結合和差角公式及正弦定理可求;(Ⅱ)由余弦定理可求,然后結合三角形的面積公式可求;(Ⅲ)結合二倍角公式及和角余弦公式即可求解.【詳解】(Ⅰ)因為,所以,所以,由正弦定理可得,;(Ⅱ)由余弦定理可得,,整理可得,,解可得,,因為,所以;(Ⅲ)由于,.所以.【點睛】本題主要考查了正弦定理、余弦定理、和角余弦公式,二倍角公式及三角形的面積公式的綜合應用,意在考查學生對這些知識的理解掌握水平.18.特征值為1,特征向量為.【解析】
設出矩陣M結合矩陣運算和矩陣相等的條件可求矩陣M,然后利用可求特征值的另一個特征向量.【詳解】設矩陣M=,則AM=,所以,解得,所以M=,則矩陣M的特征方程為,解得,即特征值為1,設特征值的特征向量為,則,即,解得x=0,所以屬于特征值的的一個特征向量為.【點睛】本題主要考查矩陣的運算及特征量的求解,矩陣運算的關鍵是明確其運算規(guī)則,側重考查數(shù)學運算的核心素養(yǎng).19.(1),;(2)2.【解析】
(1)由得,求出曲線的直角坐標方程.由直線的參數(shù)方程消去參數(shù),即求直線的普通方程;(2)將直線的參數(shù)方程化為標準式(為參數(shù)),代入曲線的直角坐標方程,韋達定理得,點在直線上,則,即可求出的值.【詳解】(1)由可得,即,即,曲線的直角坐標方程為,由直線的參數(shù)方程(t為參數(shù)),消去得,即直線的普通方程為.(Ⅱ)點的直角坐標為,則點在直線上.將直線的參數(shù)方程化為標準式(為參數(shù)),代入曲線的直角坐標方程,整理得,直線與曲線交于兩點,,即.設點所對應的參數(shù)分別為,由韋達定理可得,.點在直線上,,.【點睛】本題考查參數(shù)方程、極坐標方程和普通方程的互化及應用,屬于中檔題.20.(1)證明見解析;(2).【解析】
(1)取中點,連接,根據(jù)等腰三角形的性質(zhì)得到,利用全等三角形證得,由此證得平面,進而證得平面平面.(2)由(1)知平面,即是四面體的面上的高,結合錐體體積公式,求得四面體的體積.【詳解】(1)證明:如圖,取中點,連接,由則,則,故故,平面.又平面,故平面平面(2)由(1)知平面,即是四面體的面上的高,且.在中,,由勾股定理易知故四面體的體積【點睛】本小題主要考查面面垂直的證明,考查錐體體積計算,考查空間想象能力和邏輯推理能力,屬于中檔題.21.(1);(2).【解析】
(1)求出函數(shù)的定義域,即可求出結論;(2)化簡集合,根據(jù)確定集合的端點位置,建立的不等量關系,即可求解.【詳解】(1)由,即得或,所以集合或.(2)集合,由得或,解得或,所以實數(shù)的取值范圍為.【點睛】本題考查集合的運算,集合間的關系求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版高??蒲谐晒D化合同管理規(guī)定2篇
- 2025年度社區(qū)垃圾分類與回收處理服務合同范本2篇
- 2025年度智能交通系統(tǒng)技術改造合同2篇
- 二零二五年度房地產(chǎn)維修基金補充協(xié)議合同模板3篇
- 2025年度生鮮乳產(chǎn)業(yè)鏈上下游協(xié)同發(fā)展協(xié)議3篇
- 螞蟻運糧項目課程設計
- 2025年度汽車租賃合同糾紛調(diào)解協(xié)議書2篇
- 二零二五年度干掛石材研發(fā)與生產(chǎn)合作協(xié)議2篇
- 海南衛(wèi)生健康職業(yè)學院《植物學實驗》2023-2024學年第一學期期末試卷
- 2025年度男方債務處理離婚協(xié)議示范書3篇
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應用實踐指導材料之11:“5領導作用-5.5崗位、職責和權限”(雷澤佳編制-2025B0)
- 2024年-江西省安全員C證考試題庫
- 期末測試卷-2024-2025學年外研版(一起)英語六年級上冊(含答案含聽力原文無音頻)
- 四位數(shù)乘四位數(shù)乘法題500道
- (完整word版)人員密集場所消防安全管理GA654-2006
- 初二(6)班-家長會
- 光伏發(fā)電項目并網(wǎng)調(diào)試方案
- 高中化學競賽題--成鍵理論
- 康復中心組織結構圖
- 屋頂光伏設備維保方案
- 裝表接電課件
評論
0/150
提交評論