2024屆山西省太原五十一中學九年級數(shù)學第一學期期末檢測模擬試題含解析_第1頁
2024屆山西省太原五十一中學九年級數(shù)學第一學期期末檢測模擬試題含解析_第2頁
2024屆山西省太原五十一中學九年級數(shù)學第一學期期末檢測模擬試題含解析_第3頁
2024屆山西省太原五十一中學九年級數(shù)學第一學期期末檢測模擬試題含解析_第4頁
2024屆山西省太原五十一中學九年級數(shù)學第一學期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆山西省太原五十一中學九年級數(shù)學第一學期期末檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,AB為⊙O的直徑,點C,D在⊙O上.若∠AOD=30°,則∠BCD等于()A.75° B.95° C.100° D.105°2.在平面直角坐標系中,點關于原點對稱的點的坐標是()A. B. C. D.3.下列方程中是關于x的一元二次方程的是()A. B.a(chǎn)x2+bx+c=0C.(x-1)(x+2)=1 D.3x2-2xy-5y2=04.以原點為中心,把點逆時針旋轉,得點,則點坐標是()A. B. C. D.5.已知正多邊形的一個外角為36°,則該正多邊形的邊數(shù)為().A.12 B.10 C.8 D.66.如圖,線段與相交于點,連接,且,要使,應添加一個條件,不能證明的是()A. B. C. D.7.一元二次方程3x2=8x化成一般形式后,其中二次項系數(shù)和一次項系數(shù)分別是()A.3,8 B.3,0 C.3,-8 D.-3,-88.數(shù)據(jù)3,1,x,4,5,2的眾數(shù)與平均數(shù)相等,則x的值是()A.2 B.3 C.4 D.59.平面直角坐標系內(nèi)點關于點的對稱點坐標是()A.(-2,?-1) B.(-3,?-1) C.(-1,?-2) D.(-1,?-3)10.如圖,P為平行四邊形ABCD的對稱中心,以P為圓心作圓,過P的任意直線與圓相交于點M,N.則線段BM,DN的大小關系是()A.BM>DN B.BM<DN C.BM=DN D.無法確定11.下列等式從左到右變形中,屬于因式分解的是()A. B.C. D.12.如圖,某廠生產(chǎn)一種扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用紙糊的,若扇子完全打開攤平時紙面面積為πcm2,則扇形圓心角的度數(shù)為()A.120° B.140° C.150° D.160°二、填空題(每題4分,共24分)13.如圖,物理老師為同學們演示單擺運動,單擺左右擺動中,在的位置時俯角,在的位置時俯角.若,點比點高.則從點擺動到點經(jīng)過的路徑長為________.14.已知x1、x2是關于x的方程x2+4x5=0的兩個根,則x1x2=_____.15.已知為銳角,且,那么等于_____________.16.如圖所示的的方格紙中,如果想作格點與相似(相似比不能為1),則點坐標為___________.17.若拋物線的頂點在坐標軸上,則b的值為________.18.如圖,AB是⊙O的直徑,點C在⊙O上,AE是⊙O的切線,A為切點,連接BC并延長交AE于點D.若AOC=80°,則ADB的度數(shù)為()A.40°B.50°C.60°D.20°三、解答題(共78分)19.(8分)如圖所示,在平面直角坐標系中,拋物線與軸相交于點,點,與軸相交于點,與拋物線的對稱軸相交于點.(1)求該拋物線的表達式,并直接寫出點的坐標;(2)過點作交拋物線于點,求點的坐標;(3)在(2)的條件下,點在射線上,若與相似,求點的坐標.20.(8分)(1)計算:|﹣2|+(π﹣3)1+2sin61°.(2)解下列方程:x2﹣3x﹣1=1.21.(8分)在如圖所示的平面直角坐標系中,已知點A(﹣3,﹣3),點B(﹣1,﹣3),點C(﹣1,﹣1).(1)畫出△ABC;(2)畫出△ABC關于x軸對稱的△A1B1C1,并寫出A1點的坐標:;(3)以O為位似中心,在第一象限內(nèi)把△ABC擴大到原來的兩倍,得到△A2B2C2,并寫出A2點的坐標:.22.(10分)解方程:(1)x2﹣4x﹣1=0;(2)5x(x﹣1)=x﹣1.23.(10分)某商店銷售一種銷售成本為40元/千克的水產(chǎn)品,若按50元/千克銷售,一個月可售出500千克,銷售單價每漲價1元,月銷售量就減少10千克.(1)①求出月銷售量y(千克)與銷售單價x(元/千克)之間的函數(shù)關系式;②求出月銷售利潤w(元)與銷售單價x(元/千克)之間的函數(shù)關系式;(2)在月銷售成本不超過10000元的情況下,使月銷售利潤達到8000元,銷售單價應定為多少元?(3)當銷售單價定為多少元時,能獲得最大利潤?最大利潤是多少元?24.(10分)放寒假,小明的爸爸把油箱注滿油后準備駕駛汽車到距家300的學校接小明,在接到小明后立即按原路返回,已知小明爸爸汽車油箱的容積為70,請回答下列問題:(1)寫出油箱注滿油后,汽車能夠行使的總路程與平均耗油量之間的函數(shù)關系式;(2)小明的爸爸以平均每千米耗油0.1的速度駕駛汽車到達學校,在返回時由于下雨,小明的爸爸降低了車速,此時每千米的耗油量增加了一倍,如果小明的爸爸始終以此速度行使,油箱里的油是否夠回到家?如果不夠用,請通過計算說明至少還需加多少油?25.(12分)定義:我們知道,四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似(不全等),我們就把這條對角線叫做這個四邊形的“相似對角線”.理解:(1)如圖1,已知Rt△ABC在正方形網(wǎng)格中,請你只用無刻度的直尺在網(wǎng)格中找到一點D,使四邊形ABCD是以AC為“相似對角線”的四邊形(保留畫圖痕跡,找出3個即可);(2)如圖2,在四邊形ABCD中,∠ABC=80°,∠ADC=140°,對角線BD平分∠ABC.求證:BD是四邊形ABCD的“相似對角線”;(3)如圖3,已知FH是四邊形EFCH的“相似對角線”,∠EFH=∠HFG=30°,連接EG,若△EFG的面積為2,求FH的長.26.已知二次函數(shù)y=x2+bx+c的函數(shù)值y與自變量x之間的對應數(shù)據(jù)如表:x…﹣101234…y…1052125…(1)求b、c的值;(2)當x取何值時,該二次函數(shù)有最小值,最小值是多少?

參考答案一、選擇題(每題4分,共48分)1、D【解題分析】試題解析:連接故選D.點睛:圓內(nèi)接四邊形的對角互補.2、B【分析】根據(jù)關于原點對稱的點的坐標特點:兩個點關于原點對稱時,它們的坐標符號相反,即點P(x,y)關于原點O的對稱點是P′(-x,-y),可以直接寫出答案.【題目詳解】點P(-3,4)關于原點對稱的點的坐標是(3,-4).故選:B.【題目點撥】本題主要考查了關于原點對稱的點的坐標特點,關鍵是掌握兩個點關于原點對稱時坐標變化特點:橫縱坐標均互為相反數(shù).3、C【分析】一元二次方程是指只含有一個未知數(shù),且未知數(shù)的最高次數(shù)為2次的整式方程.根據(jù)定義即可求解.【題目詳解】解:A選項含有分式,故不是;B選項中沒有說明a≠0,則不是;C選項是一元二次方程;D選項中含有兩個未知數(shù),故不是;故選:C.【題目點撥】本題主要考查的是一元二次方程的定義,屬于基礎題型.解決這個問題的關鍵就是要明確一元二次方程的定義.4、B【分析】畫出圖形,利用圖象法即可解決問題.【題目詳解】觀察圖象可知B(-5,4),故選B.【題目點撥】本題考查坐標與圖形變化-旋轉,解題的關鍵是理解題意,靈活運用所學知識解決問題5、B【解題分析】利用多邊形的外角和是360°,正多邊形的每個外角都是36°,即可求出答案.【題目詳解】解:360°÷36°=10,所以這個正多邊形是正十邊形.故選:B.【題目點撥】本題主要考查了多邊形的外角和定理.是需要識記的內(nèi)容.6、D【分析】根據(jù)三角形全等的判定定理逐項判斷即可.【題目詳解】A、在和中,則,此項不符題意B、在和中,則,此項不符題意C、在和中,則,此項不符題意D、在和中,,但兩組相等的對應邊的夾角和未必相等,則不能證明,此項符合題意故選:D.【題目點撥】本題考查了三角形全等的判定定理,熟記各定理是解題關鍵.7、C【分析】要確定二次項系數(shù),一次項系數(shù),常數(shù)項,首先要把方程化成一般形式.【題目詳解】解:∴二次項系數(shù)是,一次項系數(shù)是.故選:C【題目點撥】本題考查了一元二次方程的一般形式:(a,b,c是常數(shù)且a≠0)特別要注意a≠0的條件.這是在做題過程中容易忽視的知識點.在一般形式中叫二次項,bx叫一次項,c是常數(shù)項.其中a,b,c分別叫二次項系數(shù),一次項系數(shù),常數(shù)項.8、B【分析】先根據(jù)平均數(shù)的計算方法求出平均數(shù),根據(jù)眾數(shù)的確定方法判斷出眾數(shù)可能值,最后根據(jù)眾數(shù)和平均數(shù)相等,即可得出結論.【題目詳解】根據(jù)題意得,數(shù)據(jù)3,1,x,4,5,2的平均數(shù)為(3+1+x+4+5+2)÷6=(15+x)÷6=2+,數(shù)據(jù)3,1,x,4,5,2的眾數(shù)為1或2或3或4或5,∴x=1或2或3或4或5,∵數(shù)據(jù)3,1,x,4,5,2的眾數(shù)與平均數(shù)相等,∴2+=1或2或3或4或5,∴x=﹣9或﹣3或3或9或15,∴x=3,故選:B.【題目點撥】此題主要考查了眾數(shù)的確定方法,平均數(shù)的計算方法,解一元一次方程,掌握平均數(shù)的求法是解本題的關鍵.9、B【解題分析】通過畫圖和中心對稱的性質(zhì)求解.【題目詳解】解:如圖,點P(1,1)關于點Q(?1,0)的對稱點坐標為(?3,?1).故選B.【題目點撥】本題考查了坐標與圖形變化-旋轉:圖形或點旋轉之后要結合旋轉的角度和圖形的特殊性質(zhì)來求出旋轉后的點的坐標.10、C【解題分析】分析:連接BD,根據(jù)平行四邊形的性質(zhì)得出BP=DP,根據(jù)圓的性質(zhì)得出PM=PN,結合對頂角的性質(zhì)得出∠DPN=∠BPM,從而得出三角形全等,得出答案.詳解:連接BD,因為P為平行四邊形ABCD的對稱中心,則P是平行四邊形兩對角線的交點,即BD必過點P,且BP=DP,∵以P為圓心作圓,∴P又是圓的對稱中心,∵過P的任意直線與圓相交于點M、N,∴PN=PM,∵∠DPN=∠BPM,∴△PDN≌△PBM(SAS),∴BM=DN.點睛:本題主要考查的是平行四邊形的性質(zhì)以及三角形全等的證明,屬于中等難度的題型.理解平行四邊形的中心對稱性是解決這個問題的關鍵.11、D【分析】直接利用因式分解的定義分析得出答案.【題目詳解】A.,屬于整式乘法運算,不符合因式分解的定義,故此選項錯誤;B.,右邊不是整式的積的形式,不符合因式分解的定義,故此選項錯誤;C.,屬于整式乘法運算,不符合因式分解的定義,故此選項錯誤;D.),屬于因式分解,符合題意;故選:D.【題目點撥】本題主要考查因式分解的定義:把一個多項式化為幾個整式的積的形式,這種變形叫做把這個多項式因式分解.12、C【解題分析】根據(jù)扇形的面積公式列方程即可得到結論.【題目詳解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,設扇形圓心角的度數(shù)為α,∵紙面面積為πcm2,∴,∴α=150°,故選:C.【題目點撥】本題考了扇形面積的計算的應用,解題的關鍵是熟練掌握扇形面積計算公式:扇形的面積=.二、填空題(每題4分,共24分)13、【分析】如圖,過點A作AP⊥OC于點P,過點B作BQ⊥OC于點Q,由題意可得∠AOP=60°,∠BOQ=30°,進而得∠AOB=90°,設OA=OB=x,分別在Rt△AOP和Rt△BOQ中,利用解直角三角形的知識用含x的代數(shù)式表示出OP和OQ,從而可得關于x的方程,解方程即可求出x,然后再利用弧長公式求解即可.【題目詳解】解:如圖,過點A作AP⊥OC于點P,過點B作BQ⊥OC于點Q,∵∠EOA=30°,∠FOB=60°,且OC⊥EF,∴∠AOP=60°,∠BOQ=30°,∴∠AOB=90°,設OA=OB=x,則在Rt△AOP中,OP=OAcos∠AOP=x,在Rt△BOQ中,OQ=OBcos∠BOQ=x,由PQ=OQ﹣OP可得:x﹣x=7,解得:x=7+7cm,則從點A擺動到點B經(jīng)過的路徑長為cm,故答案為:.【題目點撥】本題考查了解直角三角形的應用和弧長公式的計算,屬于??碱}型,正確理解題意、熟練掌握解直角三角形的知識是解題的關鍵.14、-1【分析】根據(jù)根與系數(shù)的關系即可求解.【題目詳解】∵x1、x2是關于x的方程x2+1x5=0的兩個根,∴x1x2=-=-1,故答案為:-1.【題目點撥】此題主要考查根與系數(shù)的關系,解題的關鍵是熟知x1x2=-.15、【分析】根據(jù)特殊角的三角函數(shù)值即可求出答案.【題目詳解】故答案為:.【題目點撥】本題主要考查特殊角的三角函數(shù)值,掌握特殊角的三角函數(shù)值是解題的關鍵.16、(5,2)或(4,4).【分析】要求△ABC與△OAB相似,因為相似比不為1,由三邊對應相等的兩三角形全等,知△OAB的邊AB不能與△ABC的邊AB對應,則AB與AC對應或者AB與BC對應并且此時AC或者BC是斜邊,分兩種情況分析即可.【題目詳解】解:根據(jù)題意得:OA=1,OB=2,AB=,∴當AB與AC對應時,有或者,∴AC=或AC=5,∵C在格點上,∴AC=(不合題意),則AC=5,如圖:∴C點坐標為(4,4)同理當AB與BC對應時,可求得BC=或者BC=5,也是只有后者符合題意,如圖:此時C點坐標為(5,2)∴C點坐標為(5,2)或(4,4).故答案為:(5,2)或(4,4).【題目點撥】本題結合坐標系,重點考查了相似三角形的判定的理解及運用.17、±1或0【分析】拋物線y=ax2+bx+c的頂點坐標為(,),因為拋物線y=x2-bx+9的頂點在坐標軸上,所以分兩種情況列式求解即可.【題目詳解】解:∵,,∴頂點坐標為(,),當拋物線y=x2-bx+9的頂點在x軸上時,=0,解得b=±1.當拋物線y=x2-bx+9的頂點在y軸上時,=0,解得b=0,故答案為:±1或0【題目點撥】此題考查了學生的綜合應用能力,解題的關鍵是掌握頂點的表示方法和x軸上的點的特點.18、B.【解題分析】試題分析:根據(jù)AE是⊙O的切線,A為切點,AB是⊙O的直徑,可以先得出∠BAD為直角.再由同弧所對的圓周角等于它所對的圓心角的一半,求出∠B,從而得到∠ADB的度數(shù).由題意得:∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°-∠B=50°.故選B.考點:圓的基本性質(zhì)、切線的性質(zhì).三、解答題(共78分)19、(1),點;(2)點;(3)或【解題分析】(1)設拋物線的表達式為,將A、B、C三點坐標代入表達式,解出a、b、c的值即可得到拋物線表達式,同理采用待定系數(shù)法求出直線BC解析式,即可求出與對稱軸的交點坐標;(2)過點E作EH⊥AB,垂足為H.先證∠EAH=∠ACO,則tan∠EAH=tan∠ACO=,設EH=t,則AH=2t,從而可得到E(-2+2t,t),最后,將點E的坐標代入拋物線的解析式求解即可;(3)先證明,再根據(jù)與相似分兩種情況討論,建立方程求出AF,利用三角函數(shù)即可求出F點的坐標.【題目詳解】(1)設拋物線的表達式為.把,和代入得,解得,拋物線的表達式,∴拋物線對稱軸為設直線BC解析式為,把和代入得,解得∴直線BC解析式為當時,點.(2)如圖,過點E作EH⊥AB,垂足為H.∵∠EAB+∠BAC=90°,∠BAC+∠ACO=90°,∴∠EAH=∠ACO.∴tan∠EAH=tan∠ACO=.設EH=t,則AH=2t,∴點E的坐標為(?2+2t,t).將(?2+2t,t)代入拋物線的解析式得:12(?2+2t)2?(?2+2t)?4=t,解得:t=或t=0(舍去)∴(3)如圖所示,,.,,.由(2)中tan∠EAH=tan∠ACO可知,.和相似,分兩種情況討論:①,即,,∵tan∠EAB=∴sin∠EAB=∴F點的縱坐標=點.②,即,,同①可得F點縱坐標=橫坐標=點.綜合①②,點或.【題目點撥】本題考查二次函數(shù)的綜合問題,需要熟練掌握待定系數(shù)法求函數(shù)解析式,熟練運用三角函數(shù)與相似三角形的性質(zhì),作出圖形,數(shù)形結合是解題的關鍵.20、(1)3;(2)【分析】(1)由題意先計算絕對值、零指數(shù)冪,代入三角函數(shù)值,再進一步計算可得;(2)根據(jù)題意直接利用公式法進行求解即可.【題目詳解】解:(1)|﹣2|+(π﹣3)1+2sin61°=2﹣+1+2×=2﹣+1+=3;(2)∵a=1,b=﹣3,c=﹣1,∴△=(﹣3)2﹣4×1×(﹣1)=13>1,則x=,即x1=,x2=.【題目點撥】本題主要考查含三角函數(shù)值的實數(shù)運算以及解一元二次方程,熟練掌握解一元二次方程的幾種常用方法:直接開平方法、因式分解法、公式法、配方法,結合方程的特點選擇合適、簡便的方法是解題的關鍵.21、(1)詳見解析;(2)詳見解析,A1(﹣3,3);(3)詳見解析,A2(6,6).【解題分析】(1)根據(jù)A、B、C三點坐標畫出圖形即可;(2)作出A、B、C關于軸的對稱點A1、B1、C1即可;(3)延長OC到C2,使得OC2=2OC,同法作出A2,B2即可;【題目詳解】(1)△ABC如圖所示;(2)△A1B1C1如圖所示;A1(﹣3,3),(3)△A2B2C2如圖所示;A2(6,6).故答案為(﹣3,3),(6,6).【題目點撥】本題考查作圖﹣位似變換,軸對稱變換等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.22、(1)x1=2+,x2=2﹣;(2)x1=1,x2=0.2【分析】(1)利用配方法求解,可得答案;(2)利用因式分解法求解,可得答案.【題目詳解】(1)∵x2﹣4x=1,∴x2﹣4x+4=1+4,即(x﹣2)2=7,則x﹣2=±,解得:x1=2+,x2=2﹣;(2)∵5x(x﹣1)﹣(x﹣1)=0,∴(x﹣1)(5x﹣1)=0,則x﹣1=0或5x﹣1=0,解得:x1=1,x2=0.2.【題目點撥】本題主要考查一元二次方程的解法,掌握配方法和因式分解法解方程,是解題的關鍵.23、(1)①y=﹣10x+1000;②w=﹣10x2+1400x﹣40000;(2)不超過10000元的情況下,使月銷售利潤達到8000元,銷售單價應定為80元;(3)售價定為70元時會獲得最大利潤,最大利潤是9000元【分析】(1)根據(jù)題意可以得到月銷售利潤w(單位:元)與售價x(單位:元/千克)之間的函數(shù)解析式;(2)根據(jù)題意可以得到方程和相應的不等式,從而可以解答本題;(3)根據(jù)(1)中的關系式化為頂點式即可解答本題.【題目詳解】解:(1)①由題意可得:y=500﹣(x﹣50)×10=﹣10x+1000;②w=(x﹣40)[﹣10x+1000]=﹣10x2+1400x﹣40000;(2)設銷售單價為a元,,解得,a=80,答:商店想在月銷售成本不超過10000元的情況下,使月銷售利潤達到8000元,銷售單價應定為80元;(3)∵y=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+9000,∴當x=70時,y取得最大值,此時y=9000,答:當售價定為70元時會獲得最大利潤,最大利潤是9000元;【題目點撥】本題考查了二次函數(shù)的實際應用,掌握解二次函數(shù)的方法、二次函數(shù)的性質(zhì)是解題的關鍵.24、(1);(2)不夠,至少要加油20L【分析】(1)根據(jù)總路程×平均耗油量=油箱總油量求解即可;(2)先計算去時所用油量,再計算返回時用油量,與油箱中剩余油量作比較即可得出答案.【題目詳解】解:(1)由題意可得出總路程與平均耗油量的函數(shù)關系式為:;(2)小明的爸爸始終以此速度行使,油箱里的油不能夠回到家小明爸爸去時用油量是:()油箱剩下的油量是:()返回每千米用油量是:()返回時用油量是:().所以,油箱里的油不能夠回

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論