唐山市2017-2018學年度高三年級二模文科數(shù)學試卷及答案_第1頁
唐山市2017-2018學年度高三年級二模文科數(shù)學試卷及答案_第2頁
唐山市2017-2018學年度高三年級二模文科數(shù)學試卷及答案_第3頁
唐山市2017-2018學年度高三年級二模文科數(shù)學試卷及答案_第4頁
唐山市2017-2018學年度高三年級二模文科數(shù)學試卷及答案_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

唐山市2017—2018學年度高三年級二模文科數(shù)學試卷及答案唐山市2017—2018學年度高三年級第二次模擬考試文科數(shù)學試卷第Ⅰ卷(共60分)一、選擇題:本大題共12個小題,每題5分,共60分.在每題給出的四個選項中,只有一項為哪一項符合題目要求的.1.設(shè)全集UR,Axx0,會集B1,0,1,2,則會集eUAIB()A.0,1,2B.1,2C.1,0,1D.1,0,1,22.復數(shù)z滿足z1ii2018(i是虛數(shù)單位),則z()A.11iB.11iC.11iD.11i222222223.已知,1,2,3,則任取一個點,,滿足的概率為()A.1B.2C.1D.199324.雙曲線x2y21的極點到漸近線的距離等于()4A.1B.1C.45D.252555.給出以下三個命題:①若“pq”是假命題,則p,q均為假命題;②命題“若x1,則x21”的否命題是:“若x1,則x21”;③命題“x0,x2x0”的否定是“x00,x02x00”;其中正確命題的個數(shù)是()A.0B.1C.2D.36.以以下列圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某幾何體的三視圖,則其表面積為()1唐山市2017—2018學年度高三年級二模文科數(shù)學試卷及答案A.2B.5C.8D.107.已知fx2a為奇函數(shù),則a()1ex.1A.1B.-2C.-1D28.函數(shù)ysinx0的部分圖象如圖,則,可能的值是()A.1,B.1,2C.2,2D.2,33339.設(shè)an是任意等差數(shù)列,它的前n項和、前2n項和與前4n項和分別為X,Y,Z,則以低等式中恒建立的是()A.2XZ3YB.4XZ4YC.2X3Z7YD.8XZ6Y10.以下列圖是某桌球游戲計分程序框圖,以下選項中輸出數(shù)據(jù)不吻合該程序的為()A.i1,S1B.i5,S33C.i7,S50D.i15,S12011.在四棱錐SABCD中,SD底面ABCD,底面ABCD是正方形,SDAD2,三棱柱MNPM1N1P1的極點都位于四棱錐SABCD的棱上,已知M,N,P分別是棱AB,AD,AS的中點,則三棱柱MNPM1N1P1的體積為()2唐山市2017—2018學年度高三年級二模文科數(shù)學試卷及答案A.1B.1C.2D.3232212.已知A8,0,B0,6,點P是圓C:x2y24上的一個動點,則uuruurPAPB的最大值為()A.16B.20C.24D.28第Ⅱ卷(共90分)二、填空題(每題5分,滿分20分,將答案填在答題紙上)xy0,13.若x,y滿足拘束條件xy20,則zx2y的最小值是.x2y30,14.曲線fx2x1在x1處的切線方程為.x15.已知Sn為數(shù)列n的前n項和,Sn2an2,若Sn254,則n.a(chǎn)16.橢圓x2y2C:a2b21ab0右焦點為F,存在直線yt與橢圓C交于A,B兩點,使得ABF為頂角是120°的等腰三角形,則橢圓C的離心率e.三、解答題(本大題共6小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟.)17.如圖,在平面四邊形ABCD中,ABBDDA2,ACB300.1)求證:BC4cosCBD;(2)點C搬動時,判斷CD可否為定長,并說明原由.18.如圖,在三棱柱ABCABC中,ACBAAC1900,平面AACC1ABC平面.11113唐山市2017—2018學年度高三年級二模文科數(shù)學試卷及答案(1)求證:AA1A1B1;(2)若,AA12,BC3,A1AC600,求點C到平面A1ABB1的距離.19.為了研究黏蟲孵化的平均溫度x(單位:0C)與孵化天數(shù)y之間的關(guān)系,某課外興趣小組經(jīng)過試驗獲取以下6組數(shù)據(jù):組號123456平均溫度121617181920孵化天數(shù)2316141297他們分別用兩種模型①ybxa,②ycedx分別進行擬合,獲取相應(yīng)的回歸方程并進行殘差解析,獲取以下列圖的殘差圖:nn經(jīng)計算得x17,y13.5,xiyi1297,xi21774,i1i11)依照殘差圖,比較模型①,②的擬合收效,應(yīng)選擇哪個模型?(給出判斷即可,不用說明原由)2)應(yīng)用最小二乘法建立關(guān)于的線性回歸方程.參照公式:回歸方程???中斜率和截距的最小二乘法估計公式分別為:ybxan(xix)(yiy)bi1??,.n,aybx(xix)2i120.已知拋物線E:y22px(p0)的焦點為F,過點F的直線l與拋物線交于A,B兩點,交y軸于點C,O為坐標原點.當OFA1200時,AF4.(1)求拋物線E的方程;2AC4BC,求直線l的方程.()若4唐山市2017—2018學年度高三年級二模文科數(shù)學試卷及答案21.設(shè)fx(ax2x)lnxa1,記gxfx.(1)當a1時,求gx的零點的個數(shù);21時,證明:fx0.()a請考生在22、23兩題中任選一題作答,若是多做,則按所做的第一題記分.22.選修4-4:坐標系與參數(shù)方程在極坐標系中,曲線C1:2sin,曲線C2:cos3,點P(1,),以極點為原點,極軸為x軸正半軸建立直角坐標系.(1)求曲線C1和C2的直角坐標方程;(2)過點P的直線l交C1于點A,B,交C2于點Q,若PAPBPQ,求的最大值.23.選修4-5:不等式選講已知a0,b0,c0,d0,a2b2ab1,cd1.1)求證:ab2;2)判斷等式acbdcd可否建立,并說明原由.5唐山市2017—2018學年度高三年級二模文科數(shù)學試卷及答案唐山市2017—2018學年度高三年級第二次模擬考試文科數(shù)學參照答案一.選擇題:A卷:ADCDBCABDCBCB卷:ABCDBCADDCBC二.填空題:(13)-1(14)2x-y-1=0(15)7(16)3-1三.解答題:17.解:1)在△ABC中,AB=2,∠ACB=30°,由正弦定理可知,BC2=,sin∠BACsin30°=4sin∠BACBCABD=60°,∠ACB=30°,則∠BAC+∠CBD=90°,則sin∠BAC=cos∠CBD,所以,BC=4cos∠CBD.(2)CD是為定長,因為在△BCD中,由(1)及余弦定理可知,222CD=BC+BD-2×BC×BD×cos∠CBD,2=4+BC-4BCcos∠CBD24+BC-BC4CD=2.18.解:1)因為平面A1ACC1⊥平面ABC,交線為AC,又BC⊥AC,所以BC⊥平面A1ACC1,AA1平面A1ACC1,從而有BC⊥AA1.因為∠AA1C=90°,所以AA1⊥A1C,6唐山市2017—2018學年度高三年級二模文科數(shù)學試卷及答案又因為BC∩A1C=C,所以AA1⊥平面A1BC,又A1B平面A1BC,所以AA1⊥A1B.2)由(1)可知A1A⊥平面A1BC,A1A平面A1ABB1,所以平面A1BC⊥平面A1ABB1,且交線為A1B.所以點C到平面A1ABB1的距離等于△CA1B的A1B邊上的高,設(shè)其為h.在Rt△AA1C中,A1A=2,∠A1AC=60°,則A1C=23.由(1)得,BC⊥A1C,×6367所以Rt△中,=3,=21.==.1=711AB217即點C到平面A1ABB1的距離為7.19.解:(1)應(yīng)入選擇模型①6--6--(2)∑(xiiiii=1i=16-262-22=∑xi-6x=1774-6×17=40,∑(xi-x)i=1i=1n--∑(xyi?=i=1i=-80=-2,nb-240∑(xi-x)i=1-?-+2×17=47.5.a(chǎn)?=y(tǒng)-bx=13.5?.所以y關(guān)于x的線性回歸方程為:y=-2x+47.520.解:p(1)由已知可得F(2,0),因為∠OFA=120°,所以x=pp22Ap又由拋物線定義可知,|AF|=xA+2=p+2=4,解得,p=2,所以拋物線E的方程為y2=4x.(2)由(1)可知,F(xiàn)(1,0),由題意可知,直線l斜率存在且不為0,設(shè)直線l的方程為y=(-1),(1,1),(2,2),kxAxyBxy7唐山市2017—2018學年度高三年級二模文科數(shù)學試卷及答案y2=4x,2222由y=(-1),得kx-(2k+4)x+k=0,kx2k2+4x1+x2=k2①12=1②xx由||=4||得,1=42③ACBCxx由①②③聯(lián)立解得,k=±22.所以l的方程為22x+y-22=0或22x-y-22=0.21.解:(1)當a=1時,g(x)=f(x)=(2x-1)lnx+x-1,所以g()=2lnx-1+3,xx因為g(x)為單調(diào)遞加函數(shù),11且g(1)=2>0,g(e)=1-e<0,所以存在t∈(e,1),使得g(t)=0,即x∈(0,t)時,g(x)<0,g(x)單調(diào)遞減;x∈(t,+∞)時,g(x)>0,g(x)單調(diào)遞加.因為g(1)=0,所以1為g(x)的一個零點,131又g(e2)=1-e2>0,所以g(x)在(e2,t)有一個零點,故g(x)有兩個零點.(2)依題意得,f(x)=a(x2lnx+1)-xlnx-1,令h(x)=x2lnx+1,所以h(x)=2xlnx+x=x(2lnx+1),11所以0<x<e-2時,h(x)<0,h(x)單調(diào)遞減;x>e-2時,h(x)>0,h(x)單調(diào)遞加,即h(x)的最小值為h(e-1)=1-1>0,所以h(x)>0.22e令t(x)=(x2lnx+1)-(xlnx+1)=(x2-x)lnx,所以t(x)≥0,2xlnx+1即xlnx+1≥xlnx+1.綜上,x2lnx+1≤1.xlnx+12又a>1,所以a>x2lnx+1,即a(xlnx+1)>xlnx+1,故f(x)>0.22.解:(1)曲線C1的直角坐標方程為:x2+y2-2y=0;8唐山市2017—2018學年度高三年級二模文科數(shù)學試卷及答案曲線C2的直角坐標方程為:x=3.(2)P的直角坐標為(-1,0),設(shè)直線l的傾斜角為α,(0<α<2),x=-1+tcosα,<α<2則直線l的參數(shù)方程為:y=tsinα,(t為參數(shù),0)1t2α+cosα)t+1=0,代入C的直角坐標方程整理得,-2(sint1+t2=2(sinα+cosα)4直線l的參數(shù)方程與x=3聯(lián)立解得,t3=cosα,由t的幾何意義可知,4λ|PA|+|PB|=2(sinα+cosα)=λ|PQ|=cosα,整理得4λ=2(sinα+cosα)cosα=sin2α+cos2α+1=2sin(2α+4)+1,由0<α<4<2α+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論