廣東省佛山市石門中學2024屆九年級數(shù)學第一學期期末考試試題含解析_第1頁
廣東省佛山市石門中學2024屆九年級數(shù)學第一學期期末考試試題含解析_第2頁
廣東省佛山市石門中學2024屆九年級數(shù)學第一學期期末考試試題含解析_第3頁
廣東省佛山市石門中學2024屆九年級數(shù)學第一學期期末考試試題含解析_第4頁
廣東省佛山市石門中學2024屆九年級數(shù)學第一學期期末考試試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

廣東省佛山市石門中學2024屆九年級數(shù)學第一學期期末考試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.用配方法解方程時,方程可變形為()A. B. C. D.2.如圖,AD是的一條角平分線,點E在AD上.若,,則與的面積比為()A.1:5 B.5:1 C.3:20 D.20:33.一元二次方程x(x﹣1)=0的解是()A.x=0 B.x=1 C.x=0或x=﹣1 D.x=0或x=14.如圖是二次函數(shù)的圖象,使成立的的取值范圍是()A. B.C. D.5.已知半徑為5的圓,其圓心到直線的距離是3,此時直線和圓的位置關(guān)系為().A.相離 B.相切 C.相交 D.無法確定6.已知x2+y=3,當1≤x≤2時,y的最小值是()A.-1 B.2 C.2.75 D.37.下列幾何圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A.等腰三角形 B.正三角形 C.平行四邊形 D.正方形8.將拋物線向上平移3個單位,再向左平移2個單位,那么得到的拋物線的解析式為()A. B.C. D.9.如圖,中,內(nèi)切圓和邊、、分別相切于點、、,若,,則的度數(shù)是()A. B. C. D.10.如圖,在□ABCD中,∠B=60°,AB=4,對角線AC⊥AB,則□ABCD的面積為A.6 B.12 C.12 D.1611.順次連接四邊形ABCD各邊的中點,所得四邊形是()A.平行四邊形B.對角線互相垂直的四邊形C.矩形D.菱形12.方程x(x﹣1)=0的根是()A.x=0 B.x=1 C.x1=0,x2=1 D.x1=0,x2=﹣1二、填空題(每題4分,共24分)13.如圖,在平面直角坐標系中,,則經(jīng)過三點的圓弧所在圓的圓心的坐標為__________;點坐標為,連接,直線與的位置關(guān)系是___________.14.一元二次方程的解是_________.15.某商場購進一批單價為16元的日用品,若按每件20元的價格銷售,每月能賣出360件,若按每件25元的價格銷售,每月能賣210件,假定每月銷售件數(shù)y(件)與每件的銷售價格x(元/件)之間滿足一次函數(shù).在商品不積壓且不考慮其他因素的條件下,銷售價格定為______元時,才能使每月的毛利潤w最大,每月的最大毛利潤是為_______元.16.小亮在投籃訓練中,對多次投籃的數(shù)據(jù)進行記錄.得到如下頻數(shù)表:投籃次數(shù)20406080120160200投中次數(shù)1533496397128160投中的頻率0.750.830.820.790.810.80.8估計小亮投一次籃,投中的概率是______.17.我們定義一種新函數(shù):形如(,且)的函數(shù)叫做“鵲橋”函數(shù).小麗同學畫出了“鵲橋”函數(shù)y=|x2-2x-3|的圖象(如圖所示),并寫出下列五個結(jié)論:①圖象與坐標軸的交點為,和;②圖象具有對稱性,對稱軸是直線;③當或時,函數(shù)值隨值的增大而增大;④當或時,函數(shù)的最小值是0;⑤當時,函數(shù)的最大值是1.其中正確結(jié)論的個數(shù)是______.18.如圖,在□ABCD中,AB=5,AD=6,AD、AB、BC分別與⊙O相切于E、F、G三點,過點C作⊙O的切線交AD于點N,切點為M.當CN⊥AD時,⊙O的半徑為____.三、解答題(共78分)19.(8分)感知定義在一次數(shù)學活動課中,老師給出這樣一個新定義:如果三角形的兩個內(nèi)角α與β滿足α+2β=90°,那么我們稱這樣的三角形為“類直角三角形”.嘗試運用(1)如圖1,在Rt△ABC中,∠C=90°,BC=3,AB=5,BD是∠ABC的平分線.①證明△ABD是“類直角三角形”;②試問在邊AC上是否存在點E(異于點D),使得△ABE也是“類直角三角形”?若存在,請求出CE的長;若不存在,請說明理由.類比拓展(2)如圖2,△ABD內(nèi)接于⊙O,直徑AB=10,弦AD=6,點E是弧AD上一動點(包括端點A,D),延長BE至點C,連結(jié)AC,且∠CAD=∠AOD,當△ABC是“類直角三角形”時,求AC的長.20.(8分)解方程(1)x2﹣6x﹣7=0(2)(x﹣1)(x+3)=1221.(8分)如圖,為的直徑,直線于點.點在上,分別連接,,且的延長線交于點,為的切線交于點.(1)求證:;(2)連接,若,,求線段的長.22.(10分)時下正是海南百香果豐收的季節(jié),張阿姨到“海南愛心扶貧網(wǎng)”上選購百香果,若購買2千克“紅土”百香果和1千克“黃金”百香果需付80元,若購買1千克“紅土”百香果和3千克“黃金”百香果需付115元.請問這兩種百香果每千克各是多少元?23.(10分)閱讀下列材料,關(guān)于x的方程:x+=c+的解是x1=c,x2=;x﹣=c﹣的解是x1=c,x2=﹣;x+=c+的解是x1=c,x2=;x+=c+的解是x1=c,x2=;……(1)請觀察上述方程與解的特征,比較關(guān)于x的方程x+=c+(a≠0)與它們的關(guān)系猜想它的解是什么,并利用“方程的解”的概念進行驗證.(2)可以直接利用(1)的結(jié)論,解關(guān)于x的方程:x+=a+.24.(10分)甲口袋中裝有兩個相同的小球,它們分別寫有1和2;乙口袋中裝有三個相同的小球,它們分別寫有3、4和5;丙口袋中裝有兩個相同的小球,它們分別寫有6和1.從這3個口袋中各隨機地取出1個小球.(1)取出的3個小球上恰好有兩個偶數(shù)的概率是多少?(2)取出的3個小球上全是奇數(shù)的概率是多少?25.(12分)如圖,已知∠ABC=90°,點P為射線BC上任意一點(點P與點B不重合),分別以AB、AP為邊在∠ABC的內(nèi)部作等邊△ABE和△APQ,連接QE并延長交BP于點F.試說明:(1)△ABP≌△AEQ;(2)EF=BF26.如圖,四邊形ABCD內(nèi)接于⊙O,AB是直徑,C為的中點,延長AD,BC交于點P,連結(jié)AC.(1)求證:AB=AP;(2)若AB=10,DP=2,①求線段CP的長;②過點D作DE⊥AB于點E,交AC于點F,求△ADF的面積.

參考答案一、選擇題(每題4分,共48分)1、D【題目詳解】解:∵2x2+3=7x,∴2x2-7x=-3,∴x2-x=-,∴x2-x+=-+,∴(x-)2=.故選D.【題目點撥】本題考查解一元二次方程-配方法,掌握配方法的步驟進行計算是解題關(guān)鍵.2、C【分析】根據(jù)已知條件先求得S△ABE:S△BED=3:2,再根據(jù)三角形相似求得S△ACD=S△ABE=S△BED,根據(jù)S△ABC=S△ABE+S△ACD+S△BED即可求得.【題目詳解】解:∵AE:ED=3:2,

∴AE:AD=3:5,

∵∠ABE=∠C,∠BAE=∠CAD,

∴△ABE∽△ACD,

∴S△ABE:S△ACD=9:25,

∴S△ACD=S△ABE,

∵AE:ED=3:2,

∴S△ABE:S△BED=3:2,

∴S△ABE=S△BED,

∴S△ACD=S△ABE=S△BED,

∵S△ABC=S△ABE+S△ACD+S△BED=S△BED+S△BED+S△BED=S△BED,

∴S△BDE:S△ABC=3:20,

故選:C.【題目點撥】本題考查了相似三角形的判定和性質(zhì),不同底等高的三角形面積的求法等,等量代換是本題的關(guān)鍵.3、D【解題分析】試題分析:方程利用兩數(shù)相乘積為0,兩因式中至少有一個為0,因此可由方程x(x﹣1)=0,可得x=0或x﹣1=0,解得:x=0或x=1.故選D.考點:解一元二次方程-因式分解法4、A【分析】先找出拋物線與x軸的交點坐標,根據(jù)圖象即可解決問題.【題目詳解】解:由圖象可知,拋物線與x軸的交點坐標分別為(-3,0)和(1,0),

∴時,x的取值范圍為.故選:A.【題目點撥】本題考查拋物線與x軸的交點,對稱軸等知識,解題的關(guān)鍵是學會數(shù)形結(jié)合,根據(jù)圖象確定自變量的取值范圍,屬于中考??碱}型.5、C【解題分析】試題分析:半徑r=5,圓心到直線的距離d=3,∵5>3,即r>d,∴直線和圓相交,故選C.【考點】直線與圓的位置關(guān)系.6、A【分析】移項后變成求二次函數(shù)y=-x2+2的最小值,再根據(jù)二次函數(shù)的圖像性質(zhì)進行答題.【題目詳解】解:∵x2+y=2,∴y=-x2+2.∴該拋物線的開口方向向下,且其頂點坐標是(0,2).∵2≤x≤2,∴離對稱軸越遠的點所對應的函數(shù)值越小,∴當x=2時,y有最小值為-4+2=-2.故選:A.【題目點撥】本題考查了二次函數(shù)的最值.求二次函數(shù)的最值有常見的兩種方法,第一種是配方法,第二種是直接套用頂點的縱坐標求,熟練掌握二次函數(shù)的圖像及性質(zhì)是解決本題的關(guān)鍵.7、D【分析】在一個平面內(nèi),如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,這樣的圖形叫做軸對稱圖形;在平面內(nèi),把一個圖形繞著某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形與另一個圖形重合,這樣的圖形叫做中心對稱圖形.【題目詳解】根據(jù)定義可得A、B為軸對稱圖形;C為中心對稱圖形;D既是軸對稱圖形,也是中心對稱圖形.故選:D.考點:軸對稱圖形與中心對稱圖形8、A【分析】拋物線平移的規(guī)律是:x值左加右減,y值上加下減,根據(jù)平移的規(guī)律解答即可.【題目詳解】∵將拋物線向上平移3個單位,再向左平移2個單位,∴,故選:A.【題目點撥】此題考查拋物線的平移規(guī)律,正確掌握平移的變化規(guī)律由此列函數(shù)關(guān)系式是解題的關(guān)鍵.9、D【分析】連接IE,IF,先利用三角形內(nèi)角和定理求出的度數(shù),然后根據(jù)四邊形內(nèi)角和求出的度數(shù),最后利用圓周角定理即可得出答案.【題目詳解】連接IE,IF∵,∵I是內(nèi)切圓圓心∴故選:D.【題目點撥】本題主要考查三角形內(nèi)角和定理,四邊形內(nèi)角和,圓周角定理,掌握三角形內(nèi)角和定理,四邊形內(nèi)角和,圓周角定理是解題的關(guān)鍵.10、D【分析】利用三角函數(shù)的定義求出AC,再求出△ABC的面積,故可得到□ABCD的面積.【題目詳解】∵∠B=60°,AB=4,AC⊥AB,∴AC=ABtan60°=4,∴S△ABC=AB×AC=×4×4=8,∴□ABCD的面積=2S△ABC=16故選D.【題目點撥】此題主要考查三角函數(shù)的應用,解題的關(guān)鍵是熟知正切的定義及平行四邊形的性質(zhì).11、A【解題分析】試題分析:連接原四邊形的一條對角線,根據(jù)中位線定理,可得新四邊形的一組對邊平行且等于對角線的一半,即一組對邊平行且相等.則新四邊形是平行四邊形.解:如圖,根據(jù)中位線定理可得:GF=BD且GF∥BD,EH=BD且EH∥BD,∴EH=FG,EH∥FG,∴四邊形EFGH是平行四邊形.故選A.考點:中點四邊形.12、C【分析】由題意推出x=0,或(x﹣1)=0,解方程即可求出x的值.【題目詳解】解:∵x(x﹣1)=0,∴x1=0,x2=1,故選C.【題目點撥】此題考查的是一元二次方程的解法,掌握用因式分解法解一元二次方程是解決此題的關(guān)鍵.二、填空題(每題4分,共24分)13、(2,0)相切【分析】由網(wǎng)格容易得出AB的垂直平分線和BC的垂直平分線,它們的交點即為點M,根據(jù)圖形即可得出點M的坐標;由于C在⊙M上,如果CD與⊙M相切,那么C點必為切點;因此可連接MC,證MC是否與CD垂直即可.可根據(jù)C、M、D三點坐標,分別表示出△CMD三邊的長,然后用勾股定理來判斷∠MCD是否為直角.【題目詳解】解:如圖,作線段AB,CD的垂直平分線交點即為M,由圖可知經(jīng)過A、B、C三點的圓弧所在圓的圓心M的坐標為(2,0).

連接MC,MD,

∵MC2=42+22=20,CD2=42+22=20,MD2=62+22=40,∴MD2=MC2+CD2,∴∠MCD=90°,

又∵MC為半徑,

∴直線CD是⊙M的切線.故答案為:(2,0);相切.【題目點撥】本題考查的直線與圓的位置關(guān)系,圓的切線的判定等知識,在網(wǎng)格和坐標系中巧妙地與圓的幾何證明有機結(jié)合,較新穎.14、x1=0,x2=4【分析】用因式分解法求解即可.【題目詳解】∵,∴x(x-4)=0,∴x1=0,x2=4.故答案為x1=0,x2=4.【題目點撥】本題考查了一元二次方程的解法,常用的方法由直接開平方法、配方法、因式分解法、求根公式法,靈活選擇合適的方法是解答本題的關(guān)鍵.15、241【分析】本題首先通過待定系數(shù)法求解y與x的關(guān)系式,繼而根據(jù)利潤公式求解二次函數(shù)表達式,最后根據(jù)二次函數(shù)性質(zhì)求解本題.【題目詳解】由題意假設,將,代入一次函數(shù)可得:,求解上述方程組得:,則,∵,∴,∴,又因為商品進價為16元,故.銷售利潤,整理上式可得:銷售利潤,由二次函數(shù)性質(zhì)可得:當時,取最大值為1.故當銷售單價為24時,每月最大毛利潤為1元.【題目點撥】本題考查二次函數(shù)的利潤問題,解題關(guān)鍵在于理清題意,按照題目要求,求解二次函數(shù)表達式,最后根據(jù)二次函數(shù)性質(zhì)求解此類型題目.16、0.1【分析】由小亮每次投籃的投中的頻率繼而可估計出這名球員投一次籃投中的概率.【題目詳解】解:∵0.75≈0.1,0.13≈0.1,0.12≈0.1,0.79≈0.1,…,∴可以看出小亮投中的頻率大都穩(wěn)定在0.1左右,∴估計小亮投一次籃投中的概率是0.1,故答案為:0.1.【題目點撥】本題比較容易,考查了利用頻率估計概率.大量反復試驗下頻率值即概率.概率=所求情況數(shù)與總情況數(shù)之比.17、1【解題分析】由,和坐標都滿足函數(shù),∴①是正確的;從圖象可以看出圖象具有對稱性,對稱軸可用對稱軸公式求得是直線,②也是正確的;根據(jù)函數(shù)的圖象和性質(zhì),發(fā)現(xiàn)當或時,函數(shù)值隨值的增大而增大,因此③也是正確的;函數(shù)圖象的最低點就是與軸的兩個交點,根據(jù),求出相應的的值為或,因此④也是正確的;從圖象上看,當或,函數(shù)值要大于當時的,因此⑤時不正確的;逐個判斷之后,可得出答案.【題目詳解】解:①∵,和坐標都滿足函數(shù),∴①是正確的;②從圖象可知圖象具有對稱性,對稱軸可用對稱軸公式求得是直線,因此②也是正確的;③根據(jù)函數(shù)的圖象和性質(zhì),發(fā)現(xiàn)當或時,函數(shù)值隨值的增大而增大,因此③也是正確的;④函數(shù)圖象的最低點就是與軸的兩個交點,根據(jù),求出相應的的值為或,因此④也是正確的;⑤從圖象上看,當或,函數(shù)值要大于當時的,因此⑤是不正確的;故答案是:1【題目點撥】理解“鵲橋”函數(shù)的意義,掌握“鵲橋”函數(shù)與與二次函數(shù)之間的關(guān)系;兩個函數(shù)性質(zhì)之間的聯(lián)系和區(qū)別是解決問題的關(guān)鍵;二次函數(shù)與軸的交點、對稱性、對稱軸及最值的求法以及增減性應熟練掌握.18、2或1.5【分析】根據(jù)切線的性質(zhì),切線長定理得出線段之間的關(guān)系,利用勾股定理列出方程解出圓的半徑.【題目詳解】解:設半徑為r,∵AD、AB、BC分別與⊙O相切于E、F、G三點,AB=5,AD=6∴GC=r,BG=BF=6-r,∴AF=5-(6-r)=r-1=AE∴ND=6-(r-1)-r=7-2r,在Rt△NDC中,NC2+ND2=CD2,

(7-r)2+(2r)2=52,解得r=2或1.5.故答案為:2或1.5.【題目點撥】本題考查了切線的性質(zhì),切線長定理,勾股定理,平行四邊形的性質(zhì),正確得出線段關(guān)系,列出方程是解題關(guān)鍵.三、解答題(共78分)19、(1)①證明見解析;②CE=;(2)當△ABC是“類直角三角形”時,AC的長為或.【分析】(1)①證明∠A+2∠ABD=90°即可解決問題.②如圖1中,假設在AC邊設上存在點E(異于點D),使得△ABE是“類直角三角形”,證明△ABC∽△BEC,可得,由此構(gòu)建方程即可解決問題.(2)分兩種情形:①如圖2中,當∠ABC+2∠C=90°時,作點D關(guān)于直線AB的對稱點F,連接FA,FB.則點F在⊙O上,且∠DBF=∠DOA.②如圖3中,由①可知,點C,A,F共線,當點E與D共線時,由對稱性可知,BA平分∠FBC,可證∠C+2∠ABC=90°,利用相似三角形的性質(zhì)構(gòu)建方程即可解決問題.【題目詳解】(1)①證明:如圖1中,∵BD是∠ABC的角平分線,∴∠ABC=2∠ABD,∵∠C=90°,∴∠A+∠ABC=90°,∴∠A+2∠ABD=90°,∴△ABD為“類直角三角形”;②如圖1中,假設在AC邊設上存在點E(異于點D),使得△ABE是“類直角三角形”,在Rt△ABC中,∵AB=5,BC=3,∴AC=,∵∠AEB=∠C+∠EBC>90°,∴∠ABE+2∠A=90°,∵∠ABE+∠A+∠CBE=90°,∴∠A=∠CBE,∴△ABC∽△BEC,∴,∴CE=,(2)∵AB是直徑,∴∠ADB=90°,∵AD=6,AB=10,∴BD=,①如圖2中,當∠ABC+2∠C=90°時,作點D關(guān)于直線AB的對稱點F,連接FA,FB,則點F在⊙O上,且∠DBF=∠DOA,∵∠DBF+∠DAF=180°,且∠CAD=∠AOD,∴∠CAD+∠DAF=180°,∴C,A,F(xiàn)共線,∵∠C+∠ABC+∠ABF=90°,∴∠C=∠ABF,∴△FAB∽△FBC,∴,即,∴AC=.②如圖3中,由①可知,點C,A,F共線,當點E與D共線時,由對稱性可知,BA平分∠FBC,∴∠C+2∠ABC=90°,∵∠CAD=∠CBF,∠C=∠C,∴△DAC∽△FBC,∴,即,∴CD=(AC+6),在Rt△ADC中,[(ac+6)]2+62=AC2,∴AC=或﹣6(舍棄),綜上所述,當△ABC是“類直角三角形”時,AC的長為或.【題目點撥】本題主要考查圓綜合題,考查了相似三角形的判定和性質(zhì),“類直角三角形”的定義等知識,解題的關(guān)鍵是理解題意,學會用分類討論的思想思考問題,學會利用參數(shù)構(gòu)建方程解決問題.20、(1)x=7或x=﹣1(2)x=﹣5或x=3【分析】(1)方程兩邊同時加16,根據(jù)完全平方公式求解方程即可.(2)開括號,再移項合并同類項,根據(jù)十字相乘法求解方程即可.【題目詳解】(1)∵x2﹣6x﹣7=0,∴x2﹣6x+9=16,∴(x﹣3)2=16,∴x﹣3=±4,∴x=7或x=﹣1;(2)原方程化為:x2+2x﹣15=0,∴(x+5)(x﹣3)=0,∴x=﹣5或x=3;【題目點撥】本題考查了解一元二次方程的問題,掌握解一元二次方程的方法是解題的關(guān)鍵.21、(1)詳見解析;(2)【分析】(1)根據(jù)切線的性質(zhì)得,由切線長定理可證,從而,然后根據(jù)等角的余角相等得到,從而根據(jù)等腰三角形的判定定理得到結(jié)論;(2)根據(jù)勾股定理計算出AC=8,再證明△ABC∽△ABD,利用相似比得到AD=,然后證明OF為△ABD的中位線,從而根據(jù)三角形中位線性質(zhì)求出OF的長.【題目詳解】(1)證明:∵是的直徑,∴(直徑所對的圓周角是),∴,∴,∵是的直徑,于點,∴是的切線(經(jīng)過半徑外端且與半徑垂直的直線是圓的切線),∵是的切線,∴(切線長定理),∴,∵,,∴,∴,∵.(2)由(1)可知,是直角三角形,在中,,,根據(jù)勾股定理求得,在和中,∴(兩個角對應相等的兩個三角形相似),∴,∴,∴,∵,,∴是的中位線,∴(三角形的中位線平行于第三邊并且等于第三邊的一半).【題目點撥】本題考查了切線的判定與性質(zhì),等腰三角形的判定與性質(zhì),勾股定理,相似三角形得判定與性質(zhì),余角的性質(zhì),以及三角形的中位線等知識.熟練掌握切線的判定與性質(zhì)、相似三角形得判定與性質(zhì)是解答本題的關(guān)鍵.22、紅土”百香果每千克25元,“黃金”百香果每千克30元【解題分析】設“紅土”百香果每千克x元,“黃金”百香果每千克y元,由題意列出方程組,解方程組即可.【題目詳解】解:設“紅土”百香果每千克x元,“黃金”百香果每千克y元,由題意得:,解得:;答:“紅土”百香果每千克25元,“黃金”百香果每千克30元.【題目點撥】本題考查了二元一次方程組的應用以及二元一次方程組的解法;根據(jù)題意列出方程組是解題的關(guān)鍵.23、(1)方程的解為x1=c,x2=,驗證見解析;(2)x=a與x=都為分式方程的解.【分析】(1)根據(jù)材料即可判斷方程的解,然后代入到方程的左右兩邊檢驗即可;(2)將方程左右兩邊同時減去3,變?yōu)轭}干中的形式,即可得出答案.【題目詳解】(1)方程的解為x1=c,x2=,驗證:當x=c時,∵左邊=c+,右邊=c+,∴左邊=右邊,∴x=c是x+=c+的解,同理可得:x=是x+=c+的解;(2)方程整理得:(x﹣3)+=(a﹣3)+,解得:x﹣3=a﹣3或x﹣3=,即x=a或x=,經(jīng)檢驗x=a與x=都為分式方程的解.【題目點撥】本題主要為材料理解題,理解材料中方程的根的由來是解題的關(guān)鍵.24、(1);(2).【分析】先畫出樹狀圖得到所有等可能的情況數(shù);(1)找出3個小球上恰好有兩個偶數(shù)的情況數(shù),然后利用概率公式進行計算即可;(2)找出3個小球上全是奇數(shù)的情況數(shù),然后利用概率公式進行計算即可.【題目詳解】根據(jù)題意,畫出如下的“樹狀圖”:從樹狀圖看出,所有可能出現(xiàn)的結(jié)果共有12個;(1)取出的3個小球上恰好有兩個偶數(shù)的結(jié)果有4個,即1,4,6;2,3,6;2,4,1;2,5,6;所以(兩個偶數(shù));(2)取出的3個小球上全是奇數(shù)的結(jié)果有2個,即1,3,1;1,5,1;所以,(三個奇數(shù)).【題目點撥】本題考查的是用樹狀圖法求概率;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.25、1.【解題分析】(1)根據(jù)等邊三角形性質(zhì)得出AB=AE,AP=AQ,∠ABE=∠BAE=∠PAQ=60°,求出∠BAP=∠EAQ,根據(jù)SAS證△BAP≌△EAQ,推出∠AE

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論