江蘇省南通市海門市海門中學2024屆數(shù)學高一上期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
江蘇省南通市海門市海門中學2024屆數(shù)學高一上期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
江蘇省南通市海門市海門中學2024屆數(shù)學高一上期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
江蘇省南通市海門市海門中學2024屆數(shù)學高一上期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
江蘇省南通市海門市海門中學2024屆數(shù)學高一上期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江蘇省南通市海門市海門中學2024屆數(shù)學高一上期末學業(yè)質(zhì)量監(jiān)測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若是第二象限角,則點在()A.第一象限 B.第二象限C.第三象限 D.第四象限2.斜率為4的直線經(jīng)過點A(3,5),B(a,7),C(-1,b)三點,則a,b的值為()A.a=,b=0 B.a=-,b=-11C.a=,b=-11 D.a=-,b=113.函數(shù)f(x)=|x|+(aR)的圖象不可能是()A. B.C. D.4.下列函數(shù)是奇函數(shù),且在區(qū)間上是增函數(shù)的是A. B.C. D.5.若直線過點(1,2),(4,2+),則此直線的傾斜角是()A.30° B.45°C.60° D.90°6.,,,則()A. B.C. D.7.如圖,在四面體ABCD中,E,F(xiàn)分別是AC與BD的中點,若CD=2AB=4,EF⊥BA,則EF與CD所成的角為()A.90° B.45°C.60° D.30°8.函數(shù)的圖像可能是()A. B.C. D.9.設(shè)全集,,,則A. B.C. D.10.用a,b,c表示空間中三條不同的直線,γ表示平面,給出下列命題:①若a⊥b,b⊥c,則a∥c;②若a∥b,a∥c,則b∥c;③若a∥γ,b∥γ,則a∥b其中真命題的序號是()A.①② B.③C.①③ D.②二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則____________________.12.已知某扇形的半徑為,面積為,那么該扇形的弧長為________.13.當一個非空數(shù)集G滿足“如果,則,,,且時,”時,我們稱G就是一個數(shù)域,以下關(guān)于數(shù)域的命題:①0和1都是任何數(shù)域的元素;②若數(shù)域G有非零元素,則;③任何一個有限數(shù)域的元素個數(shù)必為奇數(shù);④有理數(shù)集是一個數(shù)域;⑤偶數(shù)集是一個數(shù)域,其中正確的命題有______________.14.函數(shù)的定義域為________.15.函數(shù),函數(shù)有______個零點,若函數(shù)有三個不同的零點,則實數(shù)的取值范圍是______.16.已知,則___________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.對于函數(shù),若,則稱為的“不動點”,若,則稱為的“穩(wěn)定點”,函數(shù)的“不動點”和“穩(wěn)定點”的集合分別記為和,即,,那么,(1)求函數(shù)的“穩(wěn)定點”;(2)求證:;(3)若,且,求實數(shù)的取值范圍.18.設(shè)n是不小于3的正整數(shù),集合,對于集合Sn中任意兩個元素.定義.若,則稱A,B互為相反元素,記作或(1)若n=3,A=(0,1,0),B=(1,1,0),試寫出,,以及A·B的值;(2)若,證明:;(3)設(shè)k是小于n的正奇數(shù),至少含有兩個元素的集合,且對于集合M中任意兩個不同的元素,都有,試求集合M中元素個數(shù)的所有可能的取值19.如圖,在四棱錐P-ABCD中,ABCD為平行四邊形,AB⊥AC,PA⊥平面ABCD,且PA=AB=2,AC=1,點E是PD的中點.(1)求證:PB//平面AEC;(2)求D到平面AEC的距離.20.已知函數(shù)的圖象中相鄰兩條對稱軸之間的距離為,且直線是其圖象的一條對稱軸(1)求,的值;(2)在圖中畫出函數(shù)在區(qū)間上的圖象;(3)將函數(shù)的圖象上各點的橫坐標縮短為原來的(縱坐標不變),再把得到的圖象向左平移個單位,得到的圖象,求單調(diào)減區(qū)間.21.揭陽市某體育用品商店購進一批羽毛球拍,每件進價為100元,售價為160元,每星期可賣出80件.商家決定降價促銷,根據(jù)市場調(diào)查,每降價10元,每星期可多賣出20件.(1)求商家降價前每星期的銷售利潤為多少元?(2)降價后,商家要使每星期的銷售利潤最大,應(yīng)將售價定為多少元?最大銷售利潤是多少?

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】先分析得到,即得點所在的象限.【題目詳解】因為是第二象限角,所以,所以點在第四象限,故選D【題目點撥】本題主要考查三角函數(shù)的象限符合,意在考查學生對該知識的理解掌握水平,屬于基礎(chǔ)題.2、C【解題分析】因為,所以,則,故選C3、C【解題分析】對分類討論,將函數(shù)寫成分段形式,利用對勾函數(shù)的單調(diào)性,逐一進行判斷圖象即可.【題目詳解】,①當時,,圖象如A選項;②當時,時,,在遞減,在遞增;時,,由,單調(diào)遞減,所以在上單調(diào)遞減,故圖象為B;③當時,時,,可得,,在遞增,即在遞增,圖象為D;故選:C.4、B【解題分析】逐一考查所給函數(shù)的單調(diào)性和奇偶性即可.【題目詳解】逐一考查所給函數(shù)的性質(zhì):A.,函數(shù)為奇函數(shù),在區(qū)間上不具有單調(diào)性,不合題意;B.,函數(shù)為奇函數(shù),在區(qū)間上是增函數(shù),符合題意;C.,函數(shù)為非奇非偶函數(shù),在區(qū)間上是增函數(shù),不合題意;D.,函數(shù)為奇函數(shù),在區(qū)間上不具有單調(diào)性,不合題意;本題選擇B選項.【題目點撥】本題主要考查函數(shù)的單調(diào)性,函數(shù)的奇偶性等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.5、A【解題分析】求出直線的斜率,由斜率得傾斜角【題目詳解】由題意直線斜率為,所以傾斜角為故選:A6、B【解題分析】根據(jù)對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性即可得出,,的大小關(guān)系【題目詳解】,,,故選:7、D【解題分析】設(shè)G為AD的中點,連接GF,GE,由三角形中位線定理可得,,則∠GFE即為EF與CD所成的角,結(jié)合AB=2,CD=4,EF⊥AB,在△GEF中,利用三角函數(shù)即可得到答案.【題目詳解】解:設(shè)G為AD的中點,連接GF,GE則GF,GE分別為△ABD,△ACD的中線.∴,且,,且,則EF與CD所成角的度數(shù)等于EF與GE所成角的度數(shù)又EF⊥AB,∴EF⊥GF則△GEF為直角三角形,GF=1,GE=2,∠GFE=90°∴在直角△GEF中,∴∠GEF=30°故選:D.8、D【解題分析】∵,∴,∴函數(shù)需向下平移個單位,不過(0,1)點,所以排除A,當時,∴,所以排除B,當時,∴,所以排除C,故選D.考點:函數(shù)圖象的平移.9、B【解題分析】全集,,,.故選B.10、D【解題分析】因為空間中,用a,b,c表示三條不同的直線,①中正方體從同一點出發(fā)的三條線,滿足已知但是a⊥c,所以①錯誤;②若a∥b,b∥c,則a∥c,滿足平行線公理,所以②正確;③平行于同一平面的兩直線的位置關(guān)系可能是平行、相交或者異面,所以③錯誤;故選D二、填空題:本大題共6小題,每小題5分,共30分。11、7【解題分析】將兩邊平方,化簡即可得結(jié)果.【題目詳解】因為,所以,兩邊平方可得,所以,故答案為7.【題目點撥】本題主要考查指數(shù)的運算,意在考查對基礎(chǔ)知識的掌握情況,屬于簡單題.12、【解題分析】根據(jù)扇形面積公式可求得答案.【題目詳解】設(shè)該扇形的弧長為,由扇形的面積,可得,解得.故答案.【題目點撥】本題考查了扇形面積公式的應(yīng)用,考查了學生的計算能力,屬于基礎(chǔ)題.13、①②③④【解題分析】利用已知條件中數(shù)域的定義判斷各命題的真假,題目給出了對兩個實數(shù)的四種運算,要滿足對四種運算的封閉,只有一一驗證.【題目詳解】①當時,由數(shù)域的定義可知,若,則有,即,,故①是真命題;②因為,若,則,則,,則2019,所以,故②是真命題;③,當且時,則,因此只要這個數(shù)不為就一定成對出現(xiàn),所以有限數(shù)域的元素個數(shù)必為奇數(shù),所以③是真命題;④若,則,且時,,故④是真命題;⑤當時,,所以偶數(shù)集不是一個數(shù)域,故⑤是假命題;故答案為:①②③④【題目點撥】關(guān)鍵點點睛:理解數(shù)域就是對加減乘除封閉的集合,是解題的關(guān)鍵,一定要讀懂題目再入手,沒有一個條件是多余的,是難題.14、【解題分析】根據(jù)開偶次方被開方數(shù)非負數(shù),結(jié)合對數(shù)函數(shù)的定義域得到不等式組,解出即可.【題目詳解】函數(shù)定義域滿足:解得所以函數(shù)的定義域為故答案為:【題目點撥】本題考查了求函數(shù)的定義域問題,考查對數(shù)函數(shù)的性質(zhì),屬于基礎(chǔ)題.15、①.1②.【解題分析】(1)畫出圖像分析函數(shù)的零點個數(shù)(2)條件轉(zhuǎn)換為有三個不同的交點求實數(shù)的取值范圍問題,數(shù)形結(jié)合求解即可.【題目詳解】(1)由題,當時,,當時,為二次函數(shù),對稱軸為,且過開口向下.故畫出圖像有故函數(shù)有1個零點.又有三個不同的交點則有圖像有最大值為.故.故答案為:(1).1(2).【題目點撥】本題主要考查了數(shù)形結(jié)合求解函數(shù)零點個數(shù)與根據(jù)零點個數(shù)求參數(shù)范圍的問題,屬于中檔題.16、【解題分析】根據(jù)同角三角函數(shù)的關(guān)系求得,再運用正弦、余弦的二倍角公式求得,由正弦和角公式可求得答案.【題目詳解】解:因為,所以,所以,所以.故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)“穩(wěn)定點”;(2)見解析;(3)【解題分析】本題拿出一個概念來作為新型定義題,只需要去對定義的理解就好,要求函數(shù)的“穩(wěn)定點”只需求方程中的值,即為“穩(wěn)定點”若,有這是不動點的定義,此時得出,,如果,則直接滿足.先求出即存在“不動點”的條件,同理取得到存在“穩(wěn)定點”的條件,而兩集合相等,即條件所求出的結(jié)果一直,對結(jié)果進行分類討論.【題目詳解】(1)由有,得:,所以函數(shù)的“穩(wěn)定點”為;(2)證明:若,則,顯然成立;若,設(shè),有,則有,所以,故(3)因為,所以方程有實根,即有實根,所以或,解得又由得:即由(1)知,故方程左邊含有因式所以,又,所以方程要么無實根,要么根是方程的解,當方程無實根時,或,即,當方程有實根時,則方程的根是方程的解,則有,代入方程得,故,將代入方程,得,所以.綜上:的取值范圍是.【題目點撥】作為新型定義題,題中需要求什么,我們就從條件中去得到相應(yīng)的關(guān)系,比如本題中,求不動點,就去求;求穩(wěn)定點,就去求,完全根據(jù)定義去處理問題.需要求出不動點及穩(wěn)定點相同,則需要它們對應(yīng)方程的解完全一樣.18、(1)(2)證明見解析(3)集合M中元素的個數(shù)只可能是2【解題分析】(1)根據(jù)定義直接求解即可;(2)設(shè),進而結(jié)合題意得,,再計算即可;(3)假設(shè)為集合M中的三個不相同的元素,進而結(jié)合題意,推出矛盾,得出假設(shè)不成立,即集合M中至多有兩個元素,且時符合題意,故集合M中元素的個數(shù)只可能是2【小問1詳解】解:因為若,則稱A,B互為相反元素,記作或,所以,所以.【小問2詳解】解:設(shè),由,可得所以,當且僅當,即時上式“=”成立由題意可知即所以【小問3詳解】解:解法1:假設(shè)為集合M中的三個不相同的元素則即又由題意可知或1,i=1,2,,n恰有k個1,與n-k個0設(shè)其中k個等于1項依次為n-k個等于0的項依次為由題意可知所以,同理所以即因為由(2)可知因為所以,設(shè),由題意可知.所以,得與為奇數(shù)矛盾所以假設(shè)不成立,即集合M中至多有兩個元素當時符合題意所以集合M中元素的個數(shù)只可能是2解法2:假設(shè)為集合M中的三個不相同的元素則即又由題意可知恰有k個1,與n-k個0設(shè)其中k個等于1的項依次為n-k個等于0的項依次由題意可知所以①同理②因為所以,①—②得又因為為奇數(shù)與矛盾所以假設(shè)不成立,即集合M中至多有兩個元素當時符合題意所以集合M中元素的個數(shù)只可能是2【題目點撥】關(guān)鍵點點睛:本題第三問解題的關(guān)鍵在于利用反證法證明當為集合M中的三個不相同的元素時,結(jié)合題意推出與為奇數(shù)矛盾,進而得集合M中至多有兩個元素,再舉例當時符合題意即可.19、(1)證明見解析(2)【解題分析】(1)連接交于,連接,則可得,再由E是PD的中點,則可利用三角形中位線定理可得∥,然后利用線面平行的判定定理可證得結(jié)論;(2)由已知條件可證明,都為直角三角形,所以可求出,從而可求出的面積,然后利用等體積法可求出D到平面AEC的距離.【小問1詳解】連接交于,連接,因為四邊形為平行四邊形,所以,因為點E是PD的中點,所以∥,因為平面,平面,所以∥平面,【小問2詳解】因為∥,,所以,,因為平面,平面,所以,因為,、平面,所以平面,因為平面,所以,在直角中,,同理,在等腰中,,取的中點,連接,則∥,,因平面,所以平面,,設(shè)D到平面AEC的距離為,由,得,所以,得,所以D到平面AEC距離為20、(1)..(2)見解析(3),【解題分析】(1)兩條對稱軸之間的距離是半個周期,求,當時,代入求(2)由(1)知,根據(jù)“五點法”畫出函數(shù)的圖象;(3)首先求圖象變換后的解析式,再令,,求函數(shù)的單調(diào)遞減區(qū)間.【題目詳解】(1)∵相鄰兩條對稱軸之間的距離為,∴的最小正周期,∴.∵直線是函數(shù)的圖象的一條對稱軸,∴.∴,∵,∴(2)由知0-1010故函數(shù)在區(qū)間上的圖象如圖(3)由的圖象上各點的橫坐標縮短為原來的(縱坐標不變),得到,圖象向左平移個單位后得到,,令,,∴函數(shù)的單調(diào)減區(qū)間為,【題目點撥】本題考查三角函數(shù)性質(zhì)和圖象的綜合問題,意在考查熟練掌握三角函數(shù)性質(zhì),一

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論