版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆福建省平和縣一中高一上數(shù)學期末監(jiān)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)分別是x軸和圓:(x-2)2+(y-3)2=1上的動點,且點A(0,3),則的最小值為()A. B.C. D.2.函數(shù),則下列坐標表示的點一定在函數(shù)圖像上的是A. B.C. D.3.設(shè),表示兩條直線,,表示兩個平面,則下列命題正確的是A.若,,則 B.若,,則C.若,,則 D.若,,則4.邊長為的正四面體的表面積是A. B.C. D.5.已知a=log20.3,b=20.3,c=0.30.3,則a,b,c三者的大小關(guān)系是()A. B.C. D.6.“”的一個充分不必要條件是()A. B.C. D.7.已知向量,,且,若,均為正數(shù),則的最大值是A. B.C. D.8.若log2a<0,,則()A.a>1,b>0 B.a>1,b<0C.0<a<1,b>0 D.0<a<1,b<09.若將函數(shù)的圖象上所有點的橫坐標縮短為原來的一半(縱坐標不變),再將所得圖象向左平移個單位長度,得到函數(shù)的圖象,則下列說法正確的是()A.的最小正周期為 B.在區(qū)間上單調(diào)遞減C.圖象的一條對稱軸為直線 D.圖象的一個對稱中心為10.已知直線,平面滿足,則直線與直線的位置關(guān)系是A.平行 B.相交或異面C.異面 D.平行或異面二、填空題:本大題共6小題,每小題5分,共30分。11.冪函數(shù)的圖像經(jīng)過點,則_______12.冪函數(shù),當取不同的正數(shù)時,在區(qū)間上它們的圖像是一族美麗的曲線(如圖).設(shè)點,連接,線段恰好被其中的兩個冪函數(shù)的圖像三等分,即有.那么_______13.已知角的終邊經(jīng)過點,則__14.設(shè)為銳角,若,則的值為_______.15.已知,則_______.16.已知fx是定義域為R的奇函數(shù),且當x>0時,fx=ln三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知角的頂點在坐標原點,始邊與軸的非負半軸重合,終邊經(jīng)過點P(-3,4)(1)求,的值;(2)的值18.設(shè),且.(1)求a的值及的定義域;(2)求在區(qū)間上的值域.19.已知函數(shù)的部分圖象如圖所示()求函數(shù)的解析式()求函數(shù)在區(qū)間上的最大值和最小值20.已知正項數(shù)列的前項和為,且和滿足:(1)求的通項公式;(2)設(shè),求的前項和;(3)在(2)的條件下,對任意,都成立,求整數(shù)的最大值21.如圖,在四棱錐P-ABCD中,底面ABCD為平行四邊形,平面PCD⊥底面ABCD,且BC=2,,(1)證明:(2)若,求四棱錐的體積
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】取點A關(guān)于x軸的對稱點C(0,-3),得到,最小值為.故答案為B.點睛:這個題目考查的是直線和圓的位置關(guān)系,一般直線和圓的題很多情況下是利用數(shù)形結(jié)合來解決的,聯(lián)立的時候較少;再者在求圓上的點到直線或者定點的距離時,一般是轉(zhuǎn)化為圓心到直線或者圓心到定點的距離,再加減半徑,分別得到最大值和最小值2、D【解題分析】因為函數(shù),,所以,所以函數(shù)為偶函數(shù),則、均在在函數(shù)圖像上.故選D考點:函數(shù)的奇偶性3、D【解題分析】對選項進行一一判斷,選項D為面面垂直判定定理.【題目詳解】對A,與可能異面,故A錯;對B,可能在平面內(nèi);對C,與平面可能平行,故C錯;對D,面面垂直判定定理,故選D.【題目點撥】本題考查空間中線、面位置關(guān)系,判斷一個命題為假命題,只要能舉出反例即可.4、D【解題分析】∵邊長為a的正四面體的表面為4個邊長為a正三角形,∴表面積為:4×a=a2,故選D5、D【解題分析】利用指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性即可得出大小關(guān)系【題目詳解】∵a=log20.3<0,b=20.3>1,c=0.30.3∈(0,1),則a,b,c三者的大小關(guān)系是b>c>a.故選:D【題目點撥】本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎(chǔ)題6、D【解題分析】利用充分條件,必要條件的定義判斷即得.【題目詳解】由,可得,所以是的充要條件;所以是既不充分也不必要條件;所以是的必要不充分條件;所以是的充分不必要條件.故選:D.7、C【解題分析】利用向量共線定理可得2x+3y=5,再利用基本不等式即可得出【題目詳解】∵,∴(3y-5)×1+2x=0,即2x+3y=5.∵x>0,y>0,∴5=2x+3y≥2,∴xy≤,當且僅當3y=2x時取等號故選C.點睛】本題考查了向量共線定理和基本不等式,屬于中檔題8、D【解題分析】,則;,則,故選D9、D【解題分析】根據(jù)題意函數(shù)的圖象上所有點的橫坐標縮短為原來的一半(縱坐標不變),再將所得圖象向左平移個單位長度,得到函數(shù),即可求出最小正周期,把看成是整體,分別求的單調(diào)遞減區(qū)間、對稱軸、對稱中心,在分別驗證選項即可得到答案.【題目詳解】由于函數(shù)的圖象上所有點的橫坐標縮短為原來的一半(縱坐標不變),故函數(shù)的解析式為,再將所得圖象向左平移個單位長度,.,故A錯誤;的單調(diào)減區(qū)間為,故在區(qū)間內(nèi)不單調(diào)遞減;圖象的對稱軸為,不存在使得圖象的一條對稱軸為直線,故C錯誤;圖象的對稱中心的橫坐標為,當時,圖象的一個對稱中心為,故D正確.故選:D.10、D【解題分析】∵a∥α,∴a與α沒有公共點,b?α,∴a、b沒有公共點,∴a、b平行或異面故選D.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】本題首先可以根據(jù)函數(shù)是冪函數(shù)設(shè)函數(shù)解析式為,然后帶入點即可求出的值,最后得出結(jié)果?!绢}目詳解】因為函數(shù)是冪函數(shù),所以可設(shè)冪函數(shù),帶入點可得,解得,故冪函數(shù),即,答案為?!绢}目點撥】本題考查函數(shù)解析式的求法,考查對冪函數(shù)的性質(zhì)的理解,可設(shè)冪函數(shù)解析式為,考查計算能力,是簡單題。12、1【解題分析】求出的坐標,不妨設(shè),,分別過,,分別代入點的坐標,變形可解得結(jié)果.【題目詳解】因為,,,所以,,不妨設(shè),,分別過,,則,,則,所以故答案為:113、【解題分析】根據(jù)終邊上的點可得,再應(yīng)用差角正弦公式求目標式的值.【題目詳解】由題設(shè),,所以.故答案為:.14、【解題分析】由條件求得的值,利用二倍角公式求得和的值,再根據(jù),利用兩角差的正弦公式計算求得結(jié)果【題目詳解】∵為銳角,,∴,∴,故,故答案為.【題目點撥】本題主要考查同角三角函數(shù)的基本關(guān)系、兩角和差的正弦公式、二倍角公式的應(yīng)用,屬于中檔題15、【解題分析】將條件平方可得答案.【題目詳解】因為,所以,所以故答案為:16、1【解題分析】首先根據(jù)x>0時fx的解析式求出f1【題目詳解】因為當x>0時,fx=ln又因為fx是定義域為R的奇函數(shù),所以f故答案為:1.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】(1)由題意利用任意角的三角函數(shù)的定義,求得sinα,cosα的值(2)由條件利用誘導(dǎo)公式,求得的值【題目詳解】解:(1)∵角α的頂點在坐標原點,始邊與x軸的非負半軸重合,終邊經(jīng)過點P(﹣3,4),故,.(2)由(1)得.【題目點撥】本題主要考查任意角的三角函數(shù)的定義,誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題18、(1),;(2)【解題分析】(1)由代入計算可得的值,根據(jù)對數(shù)的真數(shù)大于零,求出函數(shù)的定義域;(2)由(1)可知,設(shè),則,由的取值范圍求出的范圍,即可求出的值域;【題目詳解】解:(1)∵,∴,∴,則由,解得,即,所以的定義域為(2),設(shè),則,,當時,,而,,∴,,所以在區(qū)間上的值域為【題目點撥】本題考查待定系數(shù)法求函數(shù)解析式,對數(shù)型復(fù)合函數(shù)的值域,屬于中檔題.19、();(),【解題分析】(1)由圖可知,,得,所以;(2)當時,,利用原始圖象,可知,試題解析:()由圖可知,∴,∴,,∵,∴∵,∴∴()當時,當,即時,當時,時,20、(1);(2);(3)7.【解題分析】(1)由4Sn=(an+1)2,知4Sn-1=(an-1+1)2(n≥2),由此得到(an+an-1)?(an-an-1-2)=0.從而能求出{an}的通項公式;(2)由(1)知,由此利用裂項求和法能求出Tn(3)由(2)知從而得到.由此能求出任意n∈N*,Tn都成立的整數(shù)m的最大值【題目詳解】(1)∵4Sn=(an+1)2,①∴4Sn-1=(an-1+1)2(n≥2),②①-②得4(Sn-Sn-1)=(an+1)2-(an-1+1)2∴4an=(an+1)2-(an-1+1)2化簡得(an+an-1)?(an-an-1-2)=0∵an>0,∴an-an-1=2(n≥2)∴{an}是以1為首項,2為公差等差數(shù)列∴an=1+(n-1)?2=2n-1(2)∴(3)由(2)知,∴數(shù)列{Tn}是遞增數(shù)列∴∴∴整數(shù)m的最大值是7【題目點撥】本題考查數(shù)列的通項公式的求法,考查裂項相消法求數(shù)列的前n項和,解題時要認真審題,仔細解答,注意等價轉(zhuǎn)化思想的合理運用21、(1)證明見解析;(2)8.【解題分析】(1)由平行四邊形的性質(zhì)及勾股定理可得,再由面面垂直的性質(zhì)有BC⊥面PCD,根據(jù)線面垂直的性質(zhì)即可證結(jié)論.(2)取CD的中點E
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 合伙入股合同范例
- 中廳拆除合同范例
- 德州購房合同范例
- 裝潢材料合同范例
- 汕頭大學《食品添加劑線上線下》2023-2024學年第一學期期末試卷
- 陜西職業(yè)技術(shù)學院《水彩粉風景寫生》2023-2024學年第一學期期末試卷
- 2024至2030年角磨齒輪項目投資價值分析報告
- 搜索合作合同范例
- 2024至2030年潔凈操作臺項目投資價值分析報告
- 2024至2030年工業(yè)伺服系統(tǒng)項目投資價值分析報告
- 兒童流感診療及預(yù)防指南(2024醫(yī)生版)
- 語文中考《非連續(xù)性文本閱讀》專題精練(含答案解析)
- 【課件】第21課《小圣施威降大圣》課件2024-2025學年統(tǒng)編版語文七年級上冊
- 工程計價學-001-國開機考復(fù)習資料
- 《孟母三遷》課本劇劇本:環(huán)境對成長的重要性(6篇)
- 《富馬酸盧帕他定口崩片關(guān)鍵質(zhì)量屬性與標準研究》
- 走近非遺 課件 2024-2025學年湘美版(2024)初中美術(shù)七年級上冊
- 新生兒壞死性小腸結(jié)腸炎臨床診療指南解讀 課件
- 網(wǎng)絡(luò)數(shù)據(jù)安全管理條例
- 2024版2024年【人教版】二年級上冊《道德與法治》全冊教案
- 山東省泰安市2024屆高三上學期期末數(shù)學試題(含答案解析)
評論
0/150
提交評論