版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆清遠市重點中學(xué)高一數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知α,β是兩個不同的平面,給出下列四個條件:①存在一條直線a,使得a⊥α,a⊥β;②存在兩條平行直線a,b,使得a//α,a//β,b//α,b//β;③存在兩條異面直線a,b,使得a?α,b?β,a//β,b//α;④存在一個平面γ,使得γ⊥α,γ⊥β其中可以推出α//β的條件個數(shù)是A.1 B.2C.3 D.42.《九章算術(shù)》中“方田”章給出了計算弧田面積時所用的經(jīng)驗公式,即弧田面積=×(弦×矢+矢).弧田(如圖1)由圓弧和其所對弦圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.現(xiàn)有圓心角為,半徑為2米的弧田(如圖2),則這個弧田面積大約是()平方米.(,結(jié)果保留整數(shù))A.2 B.3C.4 D.53.高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有數(shù)學(xué)王子的美譽,他和阿基米德、牛頓并列為世界三大數(shù)學(xué)家,用其姓名命名的“高斯函數(shù)”為,其中表示不超過的最大整數(shù),例如,已知函數(shù),令函數(shù),則的值域為()A.B.C.D.4.已知,若不等式恒成立,則的最大值為()A.13 B.14C.15 D.165.計算2sin2105°-1的結(jié)果等于()A. B.C. D.6.如圖,一個直三棱柱形容器中盛有水,且側(cè)棱.若側(cè)面水平放置時,液面恰好過的中點,當(dāng)?shù)酌鍭BC水平放置時,液面高為()A.6 B.7C.2 D.47.玉雕在我國歷史悠久,擁有深厚的文化底蘊,數(shù)千年來始終以其獨特的內(nèi)涵與魅力深深吸引著世人.玉雕壁畫是采用傳統(tǒng)的手工雕刻工藝,加工生產(chǎn)成的玉雕工藝畫.某扇形玉雕壁畫尺寸(單位:)如圖所示,則該壁畫的扇面面積約為()A. B.C. D.8.給定已知函數(shù).若動直線y=m與函數(shù)的圖象有3個交點,則實數(shù)m的取值范圍為A. B.C. D.9.已知,,則的值為()A. B.C. D.10.若則一定有A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若點在角終邊上,則的值為_____12.計算:()0+_____13.若函數(shù)滿足,且當(dāng)時,則______14.________15.用半徑為的半圓形紙片卷成一個圓錐,則這個圓錐的高為__________16.在正方形ABCD中,E是線段CD的中點,若,則________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,(1)若,求a的值;(2)若函數(shù)在內(nèi)有且只有一個零點,求實數(shù)a的取值范圍18.已知函數(shù)的圖象過點(1)求的值并求函數(shù)的值域;(2)若關(guān)于的方程有實根,求實數(shù)的取值范圍;(3)若為偶函數(shù),求實數(shù)的值19.已知.(1)求函數(shù)的單調(diào)遞減區(qū)間;(2)求函數(shù)的最值并寫出取最值時自變量的值;(3)若函數(shù)為偶函數(shù),求的值.20.某單位安裝1個自動污水凈化設(shè)備,安裝這種凈水設(shè)備的成本費(單位:萬元)與管線、主體裝置的占地面積x(單位:平方米)成正比,比例系數(shù)為0.1,為了保證正常用水,安裝后采用凈水裝置凈水和自來水公司供水互補的用水模式.假設(shè)在此模式下,安裝后該單位每年向自來水公司繳納水費為,記y為該單位安裝這種凈水設(shè)備費用與安裝設(shè)備后每年向自來水公司繳水費之和(1)寫出y關(guān)于x的函數(shù)表達式;(2)求x為多少時,y有最小值,并求出y的最小值21.某地政府為增加農(nóng)民收人,根據(jù)當(dāng)?shù)氐赜蛱攸c,積極發(fā)展農(nóng)產(chǎn)品加工業(yè).經(jīng)過市場調(diào)查,加工某農(nóng)產(chǎn)品需投入固定成本3萬元,每加工噸該農(nóng)產(chǎn)品,需另投入成本萬元,且已知加工后的該農(nóng)產(chǎn)品每噸售價為10萬元,且加工后的該農(nóng)產(chǎn)品能全部銷售完.(1)求加工后該農(nóng)產(chǎn)品的利潤(萬元)與加工量(噸)的函數(shù)關(guān)系式;(2)求加工后的該農(nóng)產(chǎn)品利潤的最大值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】當(dāng)α,β不平行時,不存在直線a與α,β都垂直,∴a⊥α,a⊥β?α∥β,故1正確;存在兩條平行直線a,b,a∥α,b∥β,a∥β,b∥α,則α,β相交或平行,所以2不正確;存在兩條異面直線a,b,a?α,b?β,a∥β,b∥α,由面面平行的判定定理得α∥β,故3正確;存在一個平面γ,使得γ⊥α,γ⊥β,則α,β相交或平行,所以4不正確;故選B2、A【解題分析】先由已知條件求出,然后利用公式求解即可【題目詳解】因為,所以,在中,,所以,所以,所以這個弧田面積為,故選:A3、C【解題分析】先進行分離,然后結(jié)合指數(shù)函數(shù)與反比例函數(shù)性質(zhì)求出的值域,結(jié)合已知定義即可求解【題目詳解】解:因為,所以,所以,則的值域故選:C4、D【解題分析】用分離參數(shù)法轉(zhuǎn)化為恒成立,只需,再利用基本不等式求出的最小值即可.【題目詳解】因為,所以,所以恒成立,只需因為,所以,當(dāng)且僅當(dāng)時,即時取等號.所以.即的最大值為16.故選:D5、D【解題分析】.選D6、A【解題分析】根據(jù)題意,當(dāng)側(cè)面AA1B1B水平放置時,水的形狀為四棱柱形,由已知條件求出水的體積;當(dāng)?shù)酌鍭BC水平放置時,水的形狀為三棱柱形,設(shè)水面高為h,故水的體積可以用三角形的面積直接表示出,計算即可得答案【題目詳解】根據(jù)題意,當(dāng)側(cè)面AA1B1B水平放置時,水的形狀為四棱柱形,底面是梯形,設(shè)△ABC的面積為S,則S梯形=S,水的體積V水=S×AA1=6S,當(dāng)?shù)酌鍭BC水平放置時,水的形狀為三棱柱形,設(shè)水面高為h,則有V水=Sh=6S,故h=6故選A【題目點撥】本題考點是棱柱的體積計算,考查用體積公式來求高,考查轉(zhuǎn)化思想以及計算能力,屬于基礎(chǔ)題7、D【解題分析】利用扇形的面積公式,利用大扇形面積減去小扇形面積即可.【題目詳解】如圖,設(shè),,由弧長公式可得解得,,設(shè)扇形,扇形的面積分別為,則該壁畫的扇面面積約為.故選:.8、B【解題分析】畫出函數(shù)的圖像以及直線y=k的圖像,根據(jù)條件和圖像求得k的范圍。【題目詳解】設(shè),由題可知,當(dāng),即或時,;當(dāng),即時,,因為,故當(dāng)時,,當(dāng)時,,做出函數(shù)的圖像如圖所示,直線y=m與函數(shù)有3個交點,可得k的范圍為(4,5).故選:B【題目點撥】本題考查函數(shù)圖像與直線有交點問題,先分別求出各段函數(shù)的解析式,再利用數(shù)形結(jié)合的方法得到參數(shù)的取值范圍。9、C【解題分析】分析可知,由可求得的值.【題目詳解】因為,則,因為,所以,,因此,.故選:C.10、D【解題分析】本題主要考查不等關(guān)系.已知,所以,所以,故.故選二、填空題:本大題共6小題,每小題5分,共30分。11、5【解題分析】由三角函數(shù)定義得12、【解題分析】根據(jù)根式、指數(shù)和對數(shù)運算化簡所求表達式.【題目詳解】依題意,原式.故答案為:【題目點撥】本小題主要考查根式、指數(shù)和對數(shù)運算,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.13、1009【解題分析】推導(dǎo)出,當(dāng)時,從而當(dāng)時,,,由此能求出的值【題目詳解】∵函數(shù)滿足,∴,∵當(dāng)時,∴當(dāng)時,,,∴故答案為1009【題目點撥】本題主要考查函數(shù)值的求法,考查函數(shù)性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題14、【解題分析】根據(jù)對數(shù)運算、指數(shù)運算和特殊角的三角函數(shù)值,整理化簡即可.【題目詳解】.故答案為:.15、【解題分析】根據(jù)圓錐的底面周長等于半圓形紙片的弧長建立等式,再根據(jù)半圓形紙片的半徑為圓錐的母線長求解即可.【題目詳解】由題得,半圓形紙片弧長為,設(shè)圓錐的底面半徑為,則,故圓錐的高為.故答案為:【題目點撥】本題主要考查了圓錐展開圖中的運算,重點是根據(jù)圓錐底面的周長等于展開后扇形的弧長,屬于基礎(chǔ)題.16、【解題分析】詳解】由圖可知,,所以))所以,故,即,即得三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】(1)由即可列方程求出a的值;(2)化簡f(x)解析式,利用進行換元,將問題轉(zhuǎn)化為在內(nèi)有且只有一個零點,在上無零點進行討論.【小問1詳解】由得,即,,解得,∵,∴;【小問2詳解】,令,則當(dāng)時,,,,在內(nèi)有且只有一個零點等價于在內(nèi)有且只有一個零點,在上無零點.∵a>1,在內(nèi)為增函數(shù).①若在內(nèi)有且只有一個零點,內(nèi)無零點,故只需,解得;②若為的零點,內(nèi)無零點,則,得,經(jīng)檢驗,符合題意綜上,實數(shù)a的取值范圍是18、(1)(2)(3)【解題分析】(1)函數(shù)圖象過,代入計算可求出的值,結(jié)合對數(shù)函數(shù)的性質(zhì)可求出函數(shù)的值域;(2)構(gòu)造函數(shù),求出它在上的值域,即可求出的取值范圍;(3)利用偶函數(shù)的性質(zhì),即可求出【題目詳解】(1)因為函數(shù)圖象過點,所以,解得.則,因為,所以,所以函數(shù)的值域為.(2)方程有實根,即,有實根,構(gòu)造函數(shù),則,因為函數(shù)在R上單調(diào)遞減,而在(0,)上單調(diào)遞增,所以復(fù)合函數(shù)是R上單調(diào)遞減函數(shù)所以在上,最小值,最大值為,即,所以當(dāng)時,方程有實根(3),是R上的偶函數(shù),則滿足,即恒成立,則恒成立,則恒成立,即恒成立,故,則恒成立,所以.【題目點撥】本題考查了函數(shù)的奇偶性的應(yīng)用,及對數(shù)函數(shù)的性質(zhì),屬于中檔題19、(1);(2)當(dāng)時,;當(dāng)時,;(3).【解題分析】(1)利用二倍角公式、輔助角公式化簡函數(shù),再利用正弦函數(shù)的單調(diào)性求解作答.(2)利用(1)中函數(shù),借助正弦函數(shù)的最值計算作答.(3)求出,再利用三角函數(shù)的奇偶性推理計算作答.【小問1詳解】依題意,,由得:,所以函數(shù)的單調(diào)遞減區(qū)間是.【小問2詳解】由(1)知,當(dāng),即時,,當(dāng),即時,,所以,當(dāng)時,,當(dāng)時,.【小問3詳解】由(1)知,,因函數(shù)為偶函數(shù),于是得,化簡整理得,而,則,所以的值是.20、(1)(2)當(dāng)時,y有最小值為3.【解題分析】(1)根據(jù)y為該單位安裝這種凈水設(shè)備費用與安裝設(shè)備后每年向自來水公司繳水費之和即可建立函數(shù)模型;(2)利用均值不等式即可求解.【小問1詳解】解:由題意,y關(guān)于x的函數(shù)表達式為;【小問2詳解】解:因為,當(dāng)且僅當(dāng),即時等號成立.所以當(dāng)時,y有最小值為3.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年廣告投放合同標的及服務(wù)內(nèi)容
- 河北省邢臺市質(zhì)檢聯(lián)盟2024-2025學(xué)年高二上學(xué)期11月期中考試化學(xué)試題
- 2024年度建筑工程施工設(shè)備租賃合同
- 2024年建筑工程施工專業(yè)分包合同
- 不同劑量藥動
- 2024商場室內(nèi)裝飾設(shè)計合同
- 2024年國際文化藝術(shù)交流活動策劃合同
- 幼兒園大班主題《勞動最光榮》教案
- 2024年廣告發(fā)布服務(wù)合同格式
- 2024年應(yīng)急照明設(shè)備代理銷售協(xié)議
- 人教版九年級化學(xué)上冊第六單元課題3-二氧化碳和一氧化碳說課稿
- 物業(yè)管理應(yīng)急響應(yīng)能力提升及案例分析
- 森林防火應(yīng)對工作預(yù)案
- 電器設(shè)備安裝安全操作規(guī)程
- 氣液兩相流講稿
- 北師大版(2019)高中英語必修第三冊單詞表默寫練習(xí)(英譯中、中譯英)
- 2023鐵礦石 釷含量的測定偶氮胂Ⅲ分光光度法
- 《中國藥典》2023年版目錄
- 第五章一元一次方程微專題-應(yīng)用題表格類訓(xùn)練 (北師大版數(shù)學(xué)七年級上冊)
- 改革開放簡史智慧樹知到課后章節(jié)答案2023年下北方工業(yè)大學(xué)
- 我的家鄉(xiāng)-黑龍江-英語PPT
評論
0/150
提交評論