版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
內(nèi)蒙古自治區(qū)烏蘭察布市集寧一中2024屆數(shù)學高一上期末經(jīng)典試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)是兩個不同的平面,是直線且,,若使成立,則需增加條件()A.是直線且, B.是異面直線,C.是相交直線且, D.是平行直線且,2.已知命題,則為()A. B.C. D.3.設(shè)集合,則A. B.C. D.4.已知函數(shù),且在上的最大值為,若函數(shù)有四個不同的零點,則實數(shù)a的取值范圍為()A. B.C. D.5.某幾何體的三視圖如圖所示,則它的體積是A.B.C.D.6.對于直線的截距,下列說法正確的是A.在y軸上的截距是6 B.在x軸上的截距是6C.在x軸上的截距是3 D.在y軸上的截距是-37.已知銳角終邊上一點A的坐標為,則的弧度數(shù)為()A.3 B.C. D.8.與終邊相同的角的集合是A. B.C. D.9.某同學用二分法求方程的近似解,該同學已經(jīng)知道該方程的一個零點在之間,他用二分法操作了7次得到了方程的近似解,那么該近似解的精確度應該為A.0.1 B.0.01C.0.001 D.0.000110.已知函數(shù),則使成立的x的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若,,則等于_________.12.若函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),則實數(shù)的取值范圍是_______.13.已知函數(shù),若、、、、滿足,則的取值范圍為______.14.若f(x)為偶函數(shù),且當x≤0時,,則不等式>的解集______.15.直線l過點P(-1,2)且到點A(2,3)和點B(-4,5)的距離相等,則直線l的方程為____________16.已知扇形OAB的面積為,半徑為3,則圓心角為_____三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.閱讀材料:我們研究了函數(shù)的單調(diào)性、奇偶性和周期性,但是這些還不能夠準確地描述出函數(shù)的圖象,例如函數(shù)和,雖然它們都是增函數(shù),圖象在上都是上升的,但是卻有著顯著的不同.如圖1所示,函數(shù)的圖象是向下凸的,在上任意取兩個點,函數(shù)的圖象總是在線段的下方,此時函數(shù)稱為下凸函數(shù);函數(shù)的圖象是向上凸的,在上任意取兩個點,函數(shù)的圖象總是在線段的上方,則函數(shù)稱為上凸函數(shù).具有這樣特征的函數(shù)通常稱做凸函數(shù).定義1:設(shè)函數(shù)是定義在區(qū)間I上的連續(xù)函數(shù),若,都有,則稱為區(qū)間I上的下凸函數(shù).如圖2.下凸函數(shù)的形狀特征:曲線上任意兩點之間的部分位于線段的下方.定義2:設(shè)函數(shù)是定義在區(qū)間I上的連續(xù)函數(shù),若,都有,則稱為區(qū)間I上的上凸函數(shù).如圖3.上凸函數(shù)的形狀特征:曲線上任意兩點之間的部分位于線段的上方.上凸(下凸)函數(shù)與函數(shù)的定義域密切相關(guān)的.例如,函數(shù)在為上凸函數(shù),在上為下凸函數(shù).函數(shù)的奇偶性和周期性分別反映的是函數(shù)圖象的對稱性和循環(huán)往復,屬于整體性質(zhì);而函數(shù)的單調(diào)性和凸性分別刻畫的是函數(shù)圖象的升降和彎曲方向,屬于局部性質(zhì).關(guān)于函數(shù)性質(zhì)的探索,對我們的啟示是:在認識事物和研究問題時,只有從多角度、全方位加以考查,才能使認識和研究更加準確.結(jié)合閱讀材料回答下面的問題:(1)請嘗試列舉一個下凸函數(shù):___________;(2)求證:二次函數(shù)是上凸函數(shù);(3)已知函數(shù),若對任意,恒有,嘗試數(shù)形結(jié)合探究實數(shù)a的取值范圍.18.已知函數(shù)f(x)=4cos(Ⅰ)求f(x)的最小正周期:(Ⅱ)求f(x)在區(qū)間-π619.已知函數(shù)的圖象在定義域(0,+∞)上連續(xù)不斷,若存在常數(shù)T>0,使得對于任意的x>0,恒成立,稱函數(shù)滿足性質(zhì)P(T).(1)若滿足性質(zhì)P(2),且,求的值;(2)若,試說明至少存在兩個不等的正數(shù)T1、T2,同時使得函數(shù)滿足性質(zhì)P(T1)和P(T2);(3)若函數(shù)滿足性質(zhì)P(T),求證:函數(shù)存在零點.20.有兩直線和,當a在區(qū)間內(nèi)變化時,求直線與兩坐標軸圍成四邊形面積的最小值21.如圖,在四棱錐P-ABCD中,側(cè)面PAD是正三角形,且與底面ABCD垂直,底面ABCD是邊長為2的菱形,∠BAD=60°,N是PB的中點,E為AD的中點,過A,D,N的平面交PC于點M.求證:(1)EN∥平面PDC;(2)BC⊥平面PEB;(3)平面PBC⊥平面ADMN.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】要使成立,需要其中一個面的兩條相交直線與另一個面平行,是相交直線且,,,,由平面和平面平行的判定定理可得.故選C.2、D【解題分析】由全稱命題的否定為存在命題,分析即得解【題目詳解】由題意,命題由全稱命題的否定為存在命題,可得:為故選:D3、B【解題分析】,選B.【考點】集合的運算【名師點睛】集合的交、并、補運算問題,應先把集合化簡再計算,常常借助數(shù)軸或韋恩圖進行處理.4、B【解題分析】由在上最大值為,討論可求出,從而,若有4個零點,則函數(shù)與有4個交點,畫出圖象,結(jié)合圖象求解即可【題目詳解】若,則函數(shù)在上單調(diào)遞增,所以的最小值為,不合題意,則,要使函數(shù)在上的最大值為如果,即,則,解得,不合題意;若,即,則解得即,則如圖所示,若有4個零點,則函數(shù)與有4個交點,只有函數(shù)的圖象開口向上,即當與)有一個交點時,方程有一個根,得,此時函數(shù)有二個不同的零點,要使函數(shù)有四個不同的零點,與有兩個交點,則拋物線的圖象開口要比的圖象開口大,可得,所以,即實數(shù)a的取值范圍為故選:B【題目點撥】關(guān)鍵點點睛:此題考查函數(shù)與方程的綜合應用,考查二次函數(shù)的性質(zhì)的應用,考查數(shù)形結(jié)合的思想,解題的關(guān)鍵是由已知條件求出的值,然后將問題轉(zhuǎn)化為函數(shù)與有4個交點,畫出函數(shù)圖象,結(jié)合圖象求解即可,屬于較難題5、A【解題分析】根據(jù)已知的三視圖想象出空間幾何體,然后由幾何體的組成和有關(guān)幾何體體積公式進行計算由幾何體的三視圖可知幾何體為一個組合體,即一個正方體中間去掉一個圓錐體,所以它的體積是.6、A【解題分析】令,得y軸上的截距,令得x軸上的截距7、C【解題分析】先根據(jù)定義得正切值,再根據(jù)誘導公式求解【題目詳解】由題意得,選C.【題目點撥】本題考查三角函數(shù)定義以及誘導公式,考查基本分析化簡能力,屬基礎(chǔ)題.8、D【解題分析】根據(jù)終邊相同的角定義的寫法,直接寫出與角α終邊相同的角,得到結(jié)果【題目詳解】根據(jù)角的終邊相同的定義的寫法,若α=,則與角α終邊相同的角可以表示為k?360°(k∈Z),即(k∈Z)故選D【題目點撥】本題考查與角α的終邊相同的角的集合的表示方法,屬于基礎(chǔ)題.9、B【解題分析】令,則用計算器作出的對應值表:由表格數(shù)據(jù)知,用二分法操作次可將作為得到方程的近似解,,,近似解的精確度應該為0.01,故選B.10、C【解題分析】考慮是偶函數(shù),其單調(diào)性是關(guān)于y軸對稱的,只要判斷出時的單調(diào)性,利用對稱關(guān)系即可.【題目詳解】,是偶函數(shù);當時,由于增函數(shù),是增函數(shù),所以是增函數(shù),是關(guān)于y軸對稱的,當時,是減函數(shù),作圖如下:欲使得,只需,兩邊取平方,得,解得;故選:C.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】由同角三角函數(shù)基本關(guān)系求出的值,再由正弦的二倍角公式即可求解.【題目詳解】因為,,所以,所以,故答案為:.12、【解題分析】先求出拋物線的對稱軸方程,然后由題意可得,解不等式可求出的取值范圍【題目詳解】解:函數(shù)的對稱軸方程為,因為函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),所以,解得,故答案為:13、【解題分析】設(shè),作出函數(shù)的圖象,可得,利用對稱性可得,由可求得,進而可得出,利用二次函數(shù)的基本性質(zhì)可求得的取值范圍.【題目詳解】作出函數(shù)的圖象如下圖所示:設(shè),當時,,由圖象可知,當時,直線與函數(shù)的圖象有五個交點,且點、關(guān)于直線對稱,可得,同理可得,由,可求得,所以,.因此,的取值范圍是.故答案為:.【題目點撥】方法點睛:已知函數(shù)有零點(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,進而構(gòu)造兩個函數(shù),然后在同一平面直角坐標系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解.14、【解題分析】由已知條件分析在上的單調(diào)性,利用函數(shù)的奇偶性可得,再根據(jù)函數(shù)的單調(diào)性解不等式即可.【題目詳解】f(x)為偶函數(shù),且當x≤0時,單調(diào)遞增,當時,函數(shù)單調(diào)遞減,若>,f(x)為偶函數(shù),,,同時平方并化簡得,解得或,即不等式>的解集為.故答案為:【題目點撥】本題考查函數(shù)的奇偶性與單調(diào)性的綜合應用,屬于中檔題.15、x+3y-5=0或x=-1【解題分析】當直線l為x=﹣1時,滿足條件,因此直線l方程可以為x=﹣1當直線l的斜率存在時,設(shè)直線l的方程為:y﹣2=k(x+1),化為:kx﹣y+k+2=0,則,化為:3k﹣1=±(3k+3),解得k=﹣∴直線l的方程為:y﹣2=﹣(x+1),化為:x+3y﹣5=0綜上可得:直線l的方程為:x+3y﹣5=0或x=﹣1故答案為x+3y﹣5=0或x=﹣116、【解題分析】直接利用扇形的面積公式得到答案.【題目詳解】故答案為:【題目點撥】本題考查了扇形面積的計算,屬于簡單題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),;(2)證明見解析;(3).【解題分析】(1)根據(jù)下凸函數(shù)的定義舉例即可;(2)利用上凸函數(shù)定義證明即可;(3)根據(jù)(2)中結(jié)論,結(jié)合條件,函數(shù)滿足上凸函數(shù)定義,根據(jù)數(shù)形結(jié)合求得參數(shù)取值范圍.【小問1詳解】,;【小問2詳解】對于二次函數(shù),,滿足,即,滿足上凸函數(shù)定義,二次函數(shù)是上凸函數(shù).【小問3詳解】由(2)知二次函數(shù)是上凸函數(shù),同理易得二次函數(shù)為下凸函數(shù),對于函數(shù),其圖像可以由兩個二次函數(shù)的部分圖像組成,如圖所示,若對任意,恒有,則函數(shù)滿足上凸函數(shù)定義,即,即.18、(Ⅰ)(Ⅱ)2,-1【解題分析】(Ⅰ)因為f=4=3故fx最小正周期為(Ⅱ)因為-π6≤x≤于是,當2x+π6=π2,即x=當2x+π6=-π6,即點睛:本題主要考查了兩角和的正弦公式,輔助角公式,正弦函數(shù)的性質(zhì),熟練掌握公式是解答本題的關(guān)鍵.19、(1)0;(2)證明見解析;(3)證明見解析.【解題分析】(1)由滿足性質(zhì)可得恒成立,取可求,取可求,由此可求的值;(2)設(shè)滿足,利用零點存在定理證明關(guān)于的方程至少有兩個解,證明至少存在兩個不等的正數(shù),同時使得函數(shù)滿足性質(zhì)和;(3)分別討論,,時函數(shù)的零點的存在性,由此完成證明.【小問1詳解】因為滿足性質(zhì),所以對于任意的x,恒成立.又因為,所以,,由可得,所以,;【小問2詳解】若正數(shù)滿足,等價于,記,顯然,,因為,所以,,即.因為的圖像連續(xù)不斷,所以存,使得,因此,至少存在兩個不等的正數(shù),使得函數(shù)同時滿足性質(zhì)和.【小問3詳解】若,則1即為零點;因為,若,則,矛盾,故,若,則,,,可得.取即可使得,又因為的圖像連續(xù)不斷,所以,當時,函數(shù)在上存在零點,當時,函數(shù)在上存在零點,若,則由,可得,由,可得,由,可得.取即可使得,又因為的圖像連續(xù)不斷,所以,當時,函數(shù)在上存在零點,當時,函數(shù)在上存在零點,綜上,函數(shù)存在零點.【題目點撥】“新定義”主要是指即時定義新概念、新公式、新定理、新法則、新運算五種,然后根據(jù)此新定義去解決問題,有時還需要用類比的方法去理解新的定義,這樣有助于對新定義的透徹理解.對于此題中的新概念,對閱讀理解能力有一定的要求.但是透過現(xiàn)象看本質(zhì),它們考查的還是基礎(chǔ)數(shù)學知識,所以說“新題”不一定是“難題”,掌握好三基,以不變應萬變才是制勝法寶.20、.【解題分析】利用直線方程,求出相關(guān)點的坐標,利用直線系解得yE=2.根據(jù)S四邊形OCEA=S△BCE﹣S△OAB即可得出【題目詳解】∵0<a<2,可得l1:ax﹣2y=2a﹣4,與坐標軸的交點A(0,﹣a+2),B(2,0)l2:2x﹣(1﹣a2)y﹣2﹣2a2=0,與坐標軸的交點C(a2+1,0),D(0,)兩直線ax﹣2y﹣2a+4=0和2x﹣(1﹣a2)y﹣2﹣2a2=0,都經(jīng)過定點(2,2),即yE=2∴S四邊形OCEA=S△BCE﹣S△OAB|BC|?yE|OA|?|OB|(a21)×2(2﹣a)×(2)=a2﹣a+3=(a)2,當a時取等號∴l(xiāng)1,l2與坐標軸圍成的四邊形面積的最小值為【題目點撥】本題考查了相交直線、三角形的面積計算公式,考查了推理能力與計算能力,屬于中檔題21、(1)見證明(2)見證明(3)見證明【解題分析】(1)先證明四邊形DENM為平行四邊形,利用線面平行的判定定理即可得到證明;(2)先證明AD⊥平面PEB,由AD∥BC可得BC⊥平面PEB;(3)由(2)知BC⊥平面PEB可得PB⊥MN,由已知得PB⊥AN,即可證得PB⊥平面ADMN,利用面面垂直的判定定理即可得到證明.【題目詳解】(1)∵AD∥BC,BC?平面PBC,AD?平面PBC,∴AD∥平面PBC.又平面ADMN∩平面PBC=MN,∴AD∥MN.又∵AD∥BC,∴MN∥BC又∵N為PB的中點,∴M為PC的中點,∴MN=BC∵E為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版環(huán)保節(jié)能設(shè)備合伙協(xié)議退伙銷售合同
- 2025年成都事業(yè)單位勞動合同范本(含試用期規(guī)定)
- 2024年版樓宇贖回融資擔保合同版B版
- 2024年石材石材行業(yè)品牌推廣采購合同3篇
- 2024年水利水電工程勞務(wù)承包合同
- 2025版中山市二手房買賣合同升級服務(wù)版3篇
- 2025年度礦山綠色礦山建設(shè)技術(shù)咨詢與服務(wù)合同3篇
- 2024滅火器環(huán)保材料研發(fā)與生產(chǎn)合同協(xié)議3篇
- 中學網(wǎng)站信息資源發(fā)布審核制度(2篇)
- 2024年版生物制藥技術(shù)轉(zhuǎn)讓合同
- 中心衛(wèi)生院關(guān)于成立按病種分值付費(DIP)工作領(lǐng)導小組及制度的通知
- 醫(yī)院感染監(jiān)測清單
- Q∕SY 05592-2019 油氣管道管體修復技術(shù)規(guī)范
- 《1.我又長大了一歲》教學課件∣泰山版
- JIS G3141-2021 冷軋鋼板及鋼帶標準
- 籃球校本課程教材
- 小學數(shù)學校本教材(共51頁)
- 遺傳群體文獻解讀集
- 工藝裝備環(huán)保性與安全性的設(shè)計要點
- [玻璃幕墻施工方案]隱框玻璃幕墻施工方案
- 國家開放大學電大本科《管理案例分析》2023-2024期末試題及答案(試卷代號:1304)
評論
0/150
提交評論