版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
新高考數(shù)學(xué)沖刺卷一、單項選擇題:本題共8小題,每小題滿分5分,共40分.在每小題給出的四個選項中,只有一項符合題目要求,選對得5分,選錯得0分.1.已知復(fù)數(shù)SKIPIF1<0,SKIPIF1<0與SKIPIF1<0共軛,SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0的值為(
)A.5 B.6 C.7 D.82.《周髀算經(jīng)》中“側(cè)影探日行”一文有記載:“即取竹空,徑一寸,長八尺,捕影而視之,空正掩目,而日應(yīng)空之孔.”意謂:“取竹空這一望筒,當(dāng)望筒直徑d是一寸,筒長l是八尺時(注:一尺等于十寸),從筒中搜捕太陽的邊緣觀察,則筒的內(nèi)孔正好覆蓋太陽,而太陽的外緣恰好填滿竹管的內(nèi)孔.”如圖所示,O為竹空底面圓心,則太陽角∠AOB的正切值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.已知非空集合SKIPIF1<0,其中SKIPIF1<0,若滿足SKIPIF1<0,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.在△ABC中,角A、B、C所對的邊分別為a、b、c,且SKIPIF1<0,若SKIPIF1<0,則△ABC的形狀是(
)A.等腰三角形 B.直角三角形 C.等邊三角形 D.等腰直角三角形5.如圖,SKIPIF1<0是平行四邊形SKIPIF1<0所在平面內(nèi)的一點(diǎn),且滿足SKIPIF1<0,則SKIPIF1<0(
)A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.16.已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0是拋物線SKIPIF1<0上一點(diǎn),圓SKIPIF1<0與線段SKIPIF1<0相交于點(diǎn)SKIPIF1<0,且被直線SKIPIF1<0截得的弦長為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.若SKIPIF1<0,(SKIPIF1<0)試比較SKIPIF1<0的大小關(guān)系(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<08.已知三棱錐SKIPIF1<0,SKIPIF1<0為SKIPIF1<0中點(diǎn),SKIPIF1<0,側(cè)面SKIPIF1<0底面SKIPIF1<0,則過點(diǎn)SKIPIF1<0的平面截該三棱錐外接球所得截面面積的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多項選擇題:本題共4小題,每小題滿分5分,共20分.在每小題給出的四個選項中,有多項符合題目要求。全部選對得5分,部分選對得2分,有選錯的得0分.9.已知SKIPIF1<0為圓SKIPIF1<0上的兩點(diǎn),SKIPIF1<0為直線SKIPIF1<0上一動點(diǎn),則(
)A.直線SKIPIF1<0與圓SKIPIF1<0相離B.當(dāng)SKIPIF1<0為兩定點(diǎn)時,滿足SKIPIF1<0的點(diǎn)SKIPIF1<0有2個C.當(dāng)SKIPIF1<0時,SKIPIF1<0的最大值是SKIPIF1<0D.當(dāng)SKIPIF1<0為圓SKIPIF1<0的兩條切線時,直線SKIPIF1<0過定點(diǎn)SKIPIF1<010.定義運(yùn)算SKIPIF1<0.在SKIPIF1<0中,角A,B,C的對邊分別為a,b,c,若a,b,c滿足SKIPIF1<0,則下列結(jié)論正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.角B的最大值為SKIPIF1<0 D.若SKIPIF1<0,則SKIPIF1<0為鈍角三角形11.已知SKIPIF1<0,SKIPIF1<0分別為雙曲線C:SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)的左、右焦點(diǎn),SKIPIF1<0的一條漸近線SKIPIF1<0的方程為SKIPIF1<0,且SKIPIF1<0到SKIPIF1<0的距離為SKIPIF1<0,點(diǎn)SKIPIF1<0為SKIPIF1<0在第一象限上的點(diǎn),點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的平分線SKIPIF1<0則下列正確的是(
)A.雙曲線的方程為SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.點(diǎn)SKIPIF1<0到SKIPIF1<0軸的距離為SKIPIF1<012.已知函數(shù)SKIPIF1<0的部分圖象如圖所示,則(
)A.SKIPIF1<0B.SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增C.將函數(shù)SKIPIF1<0圖象上各點(diǎn)橫坐標(biāo)變?yōu)樵瓉淼腟KIPIF1<0(縱坐標(biāo)不變),再將所得圖象向右平移SKIPIF1<0個單位長度,可得函數(shù)SKIPIF1<0的圖象D.函數(shù)SKIPIF1<0的零點(diǎn)個數(shù)為7填空題:本題共4小題,每小題5分,共20分,其中16題第一空2分,第二空3分。13.已知函數(shù)SKIPIF1<0(SKIPIF1<0)的圖象關(guān)于SKIPIF1<0軸對稱,且與直線SKIPIF1<0相切,寫出滿足上述條件的一個函數(shù)SKIPIF1<0______.14.已知向量SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0與SKIPIF1<0的夾角為銳角,則SKIPIF1<0的取值范圍是_______.15.在平面直角坐標(biāo)系SKIPIF1<0中,已知圓SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0與圓SKIPIF1<0相切,與圓SKIPIF1<0相交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),分別以點(diǎn)SKIPIF1<0,SKIPIF1<0為切點(diǎn)作圓SKIPIF1<0的切線SKIPIF1<0,SKIPIF1<0設(shè)直線SKIPIF1<0,SKIPIF1<0的交點(diǎn)為SKIPIF1<0,則SKIPIF1<0的最大值為__________.16.已知數(shù)列SKIPIF1<0的各項都是正數(shù),SKIPIF1<0若數(shù)列SKIPIF1<0各項單調(diào)遞增,則首項SKIPIF1<0的取值范圍是__________SKIPIF1<0當(dāng)SKIPIF1<0時,記SKIPIF1<0,若SKIPIF1<0,則整數(shù)SKIPIF1<0__________.四、解答題:本題共6小題,共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.記SKIPIF1<0的三個內(nèi)角A,B,C所對的邊分別為a,b,c,SKIPIF1<0.(1)求A;(2)若SKIPIF1<0,求SKIPIF1<0的面積的最大值.18.記SKIPIF1<0為數(shù)列SKIPIF1<0的前SKIPIF1<0項和,已知SKIPIF1<0.(1)求SKIPIF1<0的通項公式;(2)令SKIPIF1<0,記數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,試求SKIPIF1<0除以3的余數(shù).19.黨的二十大勝利召開,某單位組織舉辦“百年黨史”知識對抗賽,組委會將參賽人員隨機(jī)分為若干組,每組均為兩名選手,每組對抗賽開始時,組委會隨機(jī)從百年黨史題庫抽取SKIPIF1<0道搶答試題,每位選手搶到每道試題的機(jī)會相等SKIPIF1<0比賽細(xì)則為:選手搶到試題且回答正確得SKIPIF1<0分,對方選手得SKIPIF1<0分SKIPIF1<0選手搶到試題但回答錯誤或沒有回答得SKIPIF1<0分,對方選手得SKIPIF1<0分SKIPIF1<0道題目搶答完畢后得分多者獲勝SKIPIF1<0已知甲、乙兩名選手被分在同一組進(jìn)行對抗賽,每道試題甲回答正確的概率為SKIPIF1<0,乙回答正確的概率為SKIPIF1<0,兩名選手每道試題回答是否正確相互獨(dú)立.(1)求乙同學(xué)得SKIPIF1<0分的概率SKIPIF1<0(2)記SKIPIF1<0為甲同學(xué)的累計得分,求SKIPIF1<0的分布列和數(shù)學(xué)期望.20.如圖,在以P,A,B,C,D為頂點(diǎn)的五面體中,四邊形ABCD為等腰梯形,SKIPIF1<0∥SKIPIF1<0,SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0.(1)求證:平面SKIPIF1<0平面SKIPIF1<0;(2)若二面角SKIPIF1<0的余弦值為SKIPIF1<0,求直線PD與平面PBC所成角的正弦值.21.已知橢圓SKIPIF1<0的上頂點(diǎn)為SKIPIF1<0,過點(diǎn)SKIPIF1<0且與SKIPIF1<0軸垂直的直線被截得的線段長為SKIPIF1<0.(1)求橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程﹔(2)設(shè)直線SKIPIF1<0交橢圓SKIPIF1<0于異于點(diǎn)SKIPIF1<0的SKIPIF1<0兩點(diǎn),以SKIPIF1<0為直徑的圓經(jīng)過點(diǎn)SKIPIF1<0線段SKIPIF1<0的中垂線SKIPIF1<0與SKIPIF1<0軸的交點(diǎn)為SKIPIF1<0,求SKIPIF1<0的取值范圍.22.已知函數(shù)SKIPIF1<0,其中SKIPIF1<0為實(shí)數(shù),SKIPIF1<0為自然對數(shù)底數(shù),SKIPIF1<0.(1)已知函數(shù)SKIPIF1<0,SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0取值的集合SKIPIF1<0(2)已知函數(shù)SKIPIF1<0有兩個不同極值點(diǎn)SKIPIF1<0、SKIPIF1<0.①求實(shí)數(shù)SKIPIF1<0的取值范圍SKIPIF1<0②證明:SKIPIF1<0.新高考數(shù)學(xué)沖刺卷數(shù)學(xué)·全解全析1.D【分析】結(jié)合復(fù)數(shù)減法的模的幾何意義、橢圓的定義和標(biāo)準(zhǔn)方程等知識求得正確答案.【詳解】依題意SKIPIF1<0,即復(fù)數(shù)SKIPIF1<0對應(yīng)的點(diǎn)到點(diǎn)SKIPIF1<0和SKIPIF1<0的距離之和為SKIPIF1<0,而SKIPIF1<0,所以復(fù)數(shù)SKIPIF1<0對應(yīng)的點(diǎn),在以SKIPIF1<0為長軸,SKIPIF1<0為焦距,焦點(diǎn)在SKIPIF1<0軸的橢圓上,橢圓的長半軸為SKIPIF1<0,半焦距為SKIPIF1<0,所以短半軸為SKIPIF1<0,所以橢圓的方程為SKIPIF1<0.SKIPIF1<0與SKIPIF1<0共軛,說明SKIPIF1<0與SKIPIF1<0對應(yīng)點(diǎn)關(guān)于長軸對稱,SKIPIF1<0,設(shè)SKIPIF1<0,依題意SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以點(diǎn)SKIPIF1<0三點(diǎn)共線,SKIPIF1<0為左焦點(diǎn),而SKIPIF1<0,表示:SKIPIF1<0與SKIPIF1<0兩點(diǎn)的距離、SKIPIF1<0與右焦點(diǎn)SKIPIF1<0的距離、SKIPIF1<0與右焦點(diǎn)SKIPIF1<0的距離,這三個距離之和,即和為SKIPIF1<0.故選:D2.A【分析】根據(jù)題意,結(jié)合正切的二倍角公式進(jìn)行求解即可.【詳解】由題意可知:SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.故選:A.3.A【分析】可設(shè)SKIPIF1<0,根據(jù)題設(shè)條件可得SKIPIF1<0滿足的條件,再根據(jù)根分布可求實(shí)數(shù)SKIPIF1<0的取值范圍.【詳解】SKIPIF1<0,因為SKIPIF1<0非空,故可設(shè)SKIPIF1<0,則SKIPIF1<0為方程SKIPIF1<0的兩個實(shí)數(shù)根.設(shè)SKIPIF1<0,又SKIPIF1<0,因為SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故選:A.4.C【分析】先依據(jù)條件SKIPIF1<0求得SKIPIF1<0,再利用SKIPIF1<0可以求得SKIPIF1<0,從而判斷△ABC的形狀是等邊三角形【詳解】△ABC中,SKIPIF1<0,則SKIPIF1<0又SKIPIF1<0,則SKIPIF1<0由SKIPIF1<0,可得SKIPIF1<0,代入SKIPIF1<0則有SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0又SKIPIF1<0,則△ABC的形狀是等邊三角形故選:C5.D【分析】運(yùn)用向量線性運(yùn)算及數(shù)量積運(yùn)算求解即可.【詳解】由已知,可得SKIPIF1<0,又四邊形SKIPIF1<0為平行四邊形,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0.故選:D.6.C【分析】根據(jù)點(diǎn)在拋物線上及拋物線的定義,利用圓的弦長及勾股定理即可求解【詳解】由題意可知,如圖所示,SKIPIF1<0在拋物線上,則SKIPIF1<0易知,SKIPIF1<0,由SKIPIF1<0,因為被直線SKIPIF1<0截得的弦長為SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,于是在SKIPIF1<0中,SKIPIF1<0由SKIPIF1<0解得:SKIPIF1<0,所以SKIPIF1<0.故選:C.7.D【分析】先估算出SKIPIF1<0,進(jìn)而求出SKIPIF1<0的范圍,再由SKIPIF1<0求出SKIPIF1<0的范圍,最后構(gòu)造函數(shù)估算出SKIPIF1<0即可求解.【詳解】由SKIPIF1<0得SKIPIF1<0,故SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0,由常用數(shù)據(jù)得SKIPIF1<0,下面說明SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單增,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單減,則SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,綜上,SKIPIF1<0.故選:D.【點(diǎn)睛】本題主要考查指數(shù)對數(shù)的大小比較,關(guān)鍵點(diǎn)在于通過構(gòu)造函數(shù)求出SKIPIF1<0的范圍,放縮得到SKIPIF1<0,再由SKIPIF1<0和SKIPIF1<0結(jié)合SKIPIF1<0即可求解.8.A【分析】連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)三棱錐SKIPIF1<0外接球的球心為SKIPIF1<0,設(shè)過點(diǎn)SKIPIF1<0的平面為SKIPIF1<0,則當(dāng)SKIPIF1<0時,此時所得截面的面積最小,當(dāng)點(diǎn)SKIPIF1<0在以SKIPIF1<0為圓心的大圓上時,此時截面的面積最大,再結(jié)合球的截面的性質(zhì)即可得解.【詳解】連接SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,可知:SKIPIF1<0和SKIPIF1<0是等邊三角形,設(shè)三棱錐SKIPIF1<0外接球的球心為SKIPIF1<0,所以球心SKIPIF1<0到平面SKIPIF1<0和平面SKIPIF1<0的射影是SKIPIF1<0和SKIPIF1<0的中心SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是等邊三角形,SKIPIF1<0為SKIPIF1<0中點(diǎn),所以SKIPIF1<0,又因為側(cè)面SKIPIF1<0底面SKIPIF1<0,側(cè)面SKIPIF1<0底面SKIPIF1<0,所以SKIPIF1<0底面SKIPIF1<0,而SKIPIF1<0底面SKIPIF1<0,因此SKIPIF1<0,所以SKIPIF1<0是矩形,SKIPIF1<0和SKIPIF1<0是邊長為SKIPIF1<0的等邊三角形,所以兩個三角形的高SKIPIF1<0,在矩形SKIPIF1<0中,SKIPIF1<0,連接SKIPIF1<0,所以SKIPIF1<0,設(shè)過點(diǎn)SKIPIF1<0的平面為SKIPIF1<0,當(dāng)SKIPIF1<0時,此時所得截面的面積最小,該截面為圓形,SKIPIF1<0,因此圓SKIPIF1<0的半徑為:SKIPIF1<0,所以此時面積為SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0在以SKIPIF1<0為圓心的大圓上時,此時截面的面積最大,面積為:SKIPIF1<0,所以截面的面積范圍為SKIPIF1<0.故選:A.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:幾何體的外接球問題和截面問題,考查空間想象能力,難度較大.9.AD【分析】利用點(diǎn)到直線的距離判斷A;確定SKIPIF1<0最大時的情況判斷B;取AB中點(diǎn)D,由線段PD長判斷C;求出直線AB的方程判斷D作答.【詳解】對于A,因為SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0,即直線SKIPIF1<0與圓SKIPIF1<0相離,A正確;對于B,當(dāng)A,B為過點(diǎn)P的圓O的切線的切點(diǎn)時,SKIPIF1<0最大,而SKIPIF1<0,顯然SKIPIF1<0是銳角,正弦函數(shù)在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,因此SKIPIF1<0最大,當(dāng)且僅當(dāng)SKIPIF1<0最大,當(dāng)且僅當(dāng)SKIPIF1<0最小,則有SKIPIF1<0,此時SKIPIF1<0,所以當(dāng)SKIPIF1<0為兩定點(diǎn)時,滿足SKIPIF1<0的點(diǎn)SKIPIF1<0只有1個,B錯誤;對于C,令A(yù)B的中點(diǎn)為D,則SKIPIF1<0,SKIPIF1<0,點(diǎn)D在以O(shè)為圓心,SKIPIF1<0為半徑的圓上,SKIPIF1<0,顯然當(dāng)SKIPIF1<0在SKIPIF1<0上運(yùn)動時,SKIPIF1<0無最大值,C不正確;對于D,設(shè)SKIPIF1<0,當(dāng)SKIPIF1<0為切線時,SKIPIF1<0,點(diǎn)SKIPIF1<0在以SKIPIF1<0為直徑的圓上,此圓的方程為SKIPIF1<0,于是直線SKIPIF1<0為SKIPIF1<0,即SKIPIF1<0,所以直線SKIPIF1<0過定點(diǎn)SKIPIF1<0,D正確.故選:AD10.ACD【分析】由新定義運(yùn)算得SKIPIF1<0,對于選項A:由正弦定理邊化角后知SKIPIF1<0正確;對于選項B:可舉反例進(jìn)行判斷;對于選項C:結(jié)合余弦定理及基本不等式,可求得SKIPIF1<0,可知C正確;對于選項D:結(jié)合條件可得SKIPIF1<0計算SKIPIF1<0即可判斷出SKIPIF1<0為鈍角.【詳解】由SKIPIF1<0可知SKIPIF1<0,整理可知SKIPIF1<0,由正弦定理可知,SKIPIF1<0,從而可知A正確;因為SKIPIF1<0滿足SKIPIF1<0,但不滿足SKIPIF1<0,故B不正確;B錯誤;SKIPIF1<0SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時取“=”),又SKIPIF1<0,∴B的最大值為SKIPIF1<0,故C正確;由SKIPIF1<0可得SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0,從而可得SKIPIF1<0為最大邊,SKIPIF1<0,角A為鈍角,故D正確.故選:ACD.11.ACD【分析】由SKIPIF1<0到SKIPIF1<0的距離為SKIPIF1<0以及漸近線方程為SKIPIF1<0可求得SKIPIF1<0,即可得出方程,判斷A;由SKIPIF1<0可求出判斷B;結(jié)合雙曲線定義可求得SKIPIF1<0,求出SKIPIF1<0,即可求出SKIPIF1<0,判斷C;利用等面積法可求得點(diǎn)SKIPIF1<0到SKIPIF1<0軸的距離,判斷D.【詳解】SKIPIF1<0到SKIPIF1<0的距離為SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,又漸近線方程為SKIPIF1<0,則SKIPIF1<0,結(jié)合SKIPIF1<0可解得SKIPIF1<0,SKIPIF1<0,則雙曲線的方程為SKIPIF1<0,故A正確;SKIPIF1<0為SKIPIF1<0的平分線,SKIPIF1<0,故B錯誤;由雙曲線定義可得SKIPIF1<0,則可得SKIPIF1<0,SKIPIF1<0,則在SKIPIF1<0中,SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,故C正確;在SKIPIF1<0中,SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0到SKIPIF1<0軸的距離為d,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故D正確.故選:ACD.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:是根據(jù)已知求出雙曲線方程,結(jié)合雙曲線的定義求得焦點(diǎn)三角形的各邊長.12.ABD【分析】根據(jù)給定的函數(shù)圖象,結(jié)合五點(diǎn)法作答求出函數(shù)SKIPIF1<0的解析式,再分析判斷ABC;換元并構(gòu)造函數(shù),利用導(dǎo)數(shù)結(jié)合圖形判斷D作答.【詳解】觀察圖象知,函數(shù)SKIPIF1<0的周期SKIPIF1<0,則SKIPIF1<0,而SKIPIF1<0,即有SKIPIF1<0,由SKIPIF1<0知,SKIPIF1<0,因此SKIPIF1<0,A正確;顯然SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,因此SKIPIF1<0單調(diào)遞增,B正確;將SKIPIF1<0圖象上各點(diǎn)橫坐標(biāo)變?yōu)樵瓉淼腟KIPIF1<0得SKIPIF1<0,再將所得圖象向右平移SKIPIF1<0個單位長度,得SKIPIF1<0,而SKIPIF1<0,C錯誤;由SKIPIF1<0,得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,顯然當(dāng)SKIPIF1<0時,SKIPIF1<0,即恒有SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上無零點(diǎn),當(dāng)SKIPIF1<0時,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上都遞減,即有SKIPIF1<0在SKIPIF1<0上遞減,SKIPIF1<0,SKIPIF1<0,因此存在SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,有SKIPIF1<0在SKIPIF1<0上遞增,在SKIPIF1<0遞減,SKIPIF1<0,SKIPIF1<0,于是存在SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0遞增,SKIPIF1<0,SKIPIF1<0,從而函數(shù)SKIPIF1<0在SKIPIF1<0上存在唯一零點(diǎn),而函數(shù)SKIPIF1<0周期為SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,如圖,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,從而函數(shù)SKIPIF1<0在SKIPIF1<0上各有一個零點(diǎn),又0是SKIPIF1<0的零點(diǎn),即函數(shù)SKIPIF1<0在定義域上共有7個零點(diǎn),所以函數(shù)SKIPIF1<0的零點(diǎn)個數(shù)為7,D正確.故選:ABD【點(diǎn)睛】方法點(diǎn)睛:函數(shù)零點(diǎn)個數(shù)判斷方法:(1)直接法:直接求出f(x)=0的解;(2)圖象法:作出函數(shù)f(x)的圖象,觀察與x軸公共點(diǎn)個數(shù)或者將函數(shù)變形為易于作圖的兩個函數(shù),作出這兩個函數(shù)的圖象,觀察它們的公共點(diǎn)個數(shù).13.SKIPIF1<0(答案不唯一)【分析】由已知得到函數(shù)的對稱軸方程,從而得到SKIPIF1<0,由SKIPIF1<0與SKIPIF1<0聯(lián)立方程消去SKIPIF1<0整理成SKIPIF1<0的一元二次方程,由SKIPIF1<0得到SKIPIF1<0的關(guān)系,分別取值寫出函數(shù)即可.【詳解】已知SKIPIF1<0,∵SKIPIF1<0的圖象關(guān)于y軸對稱,∴對稱軸SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,聯(lián)立SKIPIF1<0,整理得SKIPIF1<0,即SKIPIF1<0,∵SKIPIF1<0的圖象與直線SKIPIF1<0相切,∴SKIPIF1<0,∴SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0.∴滿足條件的二次函數(shù)可以為SKIPIF1<0.故答案為:SKIPIF1<0.14.SKIPIF1<0【分析】由題意可得SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0不共線,從而可求出SKIPIF1<0的取值范圍.【詳解】因為向量SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0與SKIPIF1<0的夾角為銳角,所以SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0不共線,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,化簡得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,由SKIPIF1<0與SKIPIF1<0共線,得存在唯一實(shí)數(shù)SKIPIF1<0,使SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0與SKIPIF1<0不共線,綜上SKIPIF1<0或SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0,故答案為:SKIPIF1<015.SKIPIF1<0##SKIPIF1<0【分析】設(shè)SKIPIF1<0,SKIPIF1<0,由相切關(guān)系,建立點(diǎn)A,B坐標(biāo)所滿足的方程,即弦SKIPIF1<0所在直線的方程,由直線SKIPIF1<0與圓SKIPIF1<0相切,得SKIPIF1<0,求出m的最大值.【詳解】設(shè)點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因為分別以點(diǎn)A,B為切點(diǎn)作圓SKIPIF1<0的切線SKIPIF1<0,SKIPIF1<0.設(shè)直線SKIPIF1<0,SKIPIF1<0的交點(diǎn)為SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0是方程SKIPIF1<0的解,所以點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,同理可得SKIPIF1<0在直線SKIPIF1<0上,所以弦SKIPIF1<0所在直線的方程為SKIPIF1<0,因為直線SKIPIF1<0與圓SKIPIF1<0相切,所以SKIPIF1<0,解得SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0的最大值為SKIPIF1<0.故答案為:3.516.
SKIPIF1<0
SKIPIF1<0【分析】根據(jù)正項數(shù)列SKIPIF1<0各項單調(diào)遞增,可得出SKIPIF1<0,化簡求出SKIPIF1<0,由此可得首項SKIPIF1<0的取值范圍;再由裂項相消法求出SKIPIF1<0的表達(dá)式,然后求其范圍,即可得出答案.【詳解】由題意,正數(shù)數(shù)列SKIPIF1<0是單調(diào)遞增數(shù)列,且SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,又由SKIPIF1<0,可得:SKIPIF1<0.SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0.SKIPIF1<0,且數(shù)列SKIPIF1<0是遞增數(shù)列,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0整數(shù)SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0.17.(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)利用正弦定理邊化角以及余弦定理求解;(2)利用基本不等式和面積公式求解.【詳解】(1)由SKIPIF1<0,得SKIPIF1<0,由正弦定理,得SKIPIF1<0.由余弦定理,得SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0.(2)由余弦定理SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取“SKIPIF1<0”.所以三角形的面積SKIPIF1<0.所以三角形面積的最大值為SKIPIF1<0.18.(1)SKIPIF1<0(2)2【分析】(1)根據(jù)等差數(shù)列的定義及通項公式求出SKIPIF1<0,再根據(jù)SKIPIF1<0求出SKIPIF1<0;(2)利用等比數(shù)列前n項和公式求出SKIPIF1<0,然后應(yīng)用二項式展開式求余數(shù)【詳解】(1)由SKIPIF1<0有SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0,所以數(shù)列SKIPIF1<0是以1為首項,SKIPIF1<0為公差的等差數(shù)列,所以SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,兩式相減得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,因此SKIPIF1<0的通項公式為SKIPIF1<0.(2)由(1)及SKIPIF1<0,有SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,因為SKIPIF1<0均為正整數(shù),所以存在正整數(shù)SKIPIF1<0使得SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0除以3的余數(shù)為2.19.(1)SKIPIF1<0(2)分布列見解析;期望為SKIPIF1<0【分析】(1)根據(jù)相互獨(dú)立事件、互斥事件的判斷與概率計算公式綜合運(yùn)算求解即可;(2)由題意,SKIPIF1<0可能值為0,50,100,150,200,根據(jù)相互獨(dú)立事件、互斥事件的判斷與概率計算公式分別求出對應(yīng)取值的概率,即可得到離散型隨機(jī)變量的分布列,再由期望定義及公式求其期望值.【詳解】(1)由題意,乙同學(xué)得SKIPIF1<0分的基本事件有SKIPIF1<0乙搶到兩題且一道正確一道錯誤SKIPIF1<0、SKIPIF1<0甲乙各搶到一題都回答正確SKIPIF1<0、SKIPIF1<0甲搶到兩題且回答錯誤SKIPIF1<0,所以乙同學(xué)得SKIPIF1<0分的概率為SKIPIF1<0(2)由題意,甲同學(xué)的累計得分SKIPIF1<0可能值為0,50,100,150,200,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,分布列如下:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0所以期望SKIPIF1<0.20.(1)證明見解析(2)SKIPIF1<0【分析】(1)由面面垂直的性質(zhì)得到SKIPIF1<0平面SKIPIF1<0,由面面垂直的判定即可證明;(2)過SKIPIF1<0作SKIPIF1<0,SKIPIF1<0,垂足分別為SKIPIF1<0,SKIPIF1<0,連接SKIPIF1<0,由幾何法可證SKIPIF1<0即為二面角SKIPIF1<0的平面角,過SKIPIF1<0作SKIPIF1<0平面SKIPIF1<0,以SKIPIF1<0為x,y,z軸,建立空間直角坐標(biāo)系,設(shè)SKIPIF1<0,再由向量法求出直線PD與平面PBC所成角即可.【詳解】(1)(1)因為平面SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,又因為SKIPIF1<0平面SKIPIF1<0,所以平面SKIPIF1<0平面SKIPIF1<0.(2)過SKIPIF1<0作SKIPIF1<0,SKIPIF1<0,垂足分別為SKIPIF1<0,SKIPIF1<0,連接SKIPIF1<0,因為平面SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,因為SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0即為二面角SKIPIF1<0的平面角,不妨設(shè)SKIPIF1<0,則可知SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0平面SKIPIF1<0,以SKIPIF1<0為x,y,z軸,建立空間直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,設(shè)直線PD與平面PBC所成角為SKIPIF1<0,則SKIPIF1<0,直線PD與平面PBC所成角的正弦值為SKIPIF1<021.(1)SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)由題設(shè)有SKIPIF1<0且SKIPIF1<0求參數(shù)a,進(jìn)而寫出橢圓方程.(2)討論SKIPIF1<0的斜率,當(dāng)斜率存在時設(shè)SKIPIF1<0、SKIPIF1<0,聯(lián)立橢圓方程結(jié)合韋達(dá)定理求SKIPIF1<0關(guān)于SKIPIF1<0的表達(dá)式,再由SKIPIF1<0,應(yīng)用數(shù)量積的坐標(biāo)表示列方程求參數(shù)m,進(jìn)而求線段SKIPIF1<0中垂線SKIPIF1<0的方程及SKIPIF1<0的范圍,即可確定SKIPIF1<0的取值范圍.【詳解】(1)由已知條件得:SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,由題意知:SKIPIF1<0,解得SKIPIF1<0,∴橢圓的標(biāo)準(zhǔn)方程為SKIPIF1<0,(2)①當(dāng)直線SKIPIF1<0的斜率不存在時,顯然不合題意;②當(dāng)直線SKIPIF1<0斜率存在時,設(shè)SKIPIF1<0,當(dāng)SKIPIF1<0時,此時SKIPIF1<0關(guān)于y軸對稱,令SKIPIF1<0,∴SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍),則SKIPIF1<0符合題設(shè).∴此時有SKIPIF1<0;當(dāng)SKIPIF1<0時,則SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,由SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,整理得SKIPIF1<0,解得SKIPIF1<0(舍去),代入SKIPIF1<0得:SKIPIF1<0,∴SKIPIF1<0為SKIPIF1<0,得:SKIPIF1<0,則線段的SKIPIF1<0中垂線SKIPIF1<0為SKIPIF1<0,∴在SKIPIF1<0軸上截距SKIPIF1<0,而SKIPIF1<0,∴SKIPIF1<0且SKIPIF1<0,綜合①②:線段SKIPIF1<0的中垂線SKIPIF1<0在SKIPIF1<0軸上的截距的取值范圍是SKIPIF1<0.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:第二問,討論直線斜率,設(shè)直線方程及交點(diǎn)坐標(biāo),聯(lián)立橢圓方程并應(yīng)用韋達(dá)定理求交點(diǎn)坐標(biāo)與所設(shè)直線參數(shù)的表達(dá)式,再根據(jù)向量垂直的坐標(biāo)表示求參數(shù),進(jìn)而確定中垂線方程及參數(shù)范圍.22.(1)SKIPIF1<0(2)①SKIPIF1<0;②證明見
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 微積分 第3版 課件 5.2 換元積分法
- 外陰腫瘤課件教學(xué)課件
- 地鐵與輕軌 知識點(diǎn)提綱與復(fù)習(xí)資料 同濟(jì)大學(xué)
- 老人扶養(yǎng)協(xié)議書(2篇)
- 南京航空航天大學(xué)《電磁頻譜認(rèn)知智能前沿導(dǎo)論》2023-2024學(xué)年期末試卷
- 南京工業(yè)大學(xué)浦江學(xué)院《線性代數(shù)(理工)》2022-2023學(xué)年第一學(xué)期期末試卷
- 南京工業(yè)大學(xué)浦江學(xué)院《設(shè)計思潮與設(shè)計理念》2023-2024學(xué)年第一學(xué)期期末試卷
- 蹲踞式起跑說課稿初中
- 織金縣城關(guān)鎮(zhèn)楊柳河廉租房A棟(126套)工程施工組織設(shè)計
- 南京工業(yè)大學(xué)浦江學(xué)院《計算機(jī)網(wǎng)絡(luò)基礎(chǔ)》2022-2023學(xué)年期末試卷
- 山東省日照地區(qū)2024-2025學(xué)年八年級上學(xué)期期中考試數(shù)學(xué)試題(含答案)
- 《地產(chǎn)公司圖紙管理辦法》的通知
- 中華民族共同體概論學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 世界慢阻肺日
- 2024年資格考試-CPSM認(rèn)證考試近5年真題附答案
- 混料機(jī)的安全操作規(guī)程有哪些(8篇)
- 期中 (試題) -2024-2025學(xué)年譯林版(三起)英語六年級上冊
- 2024秋期國家開放大學(xué)《財務(wù)報表分析》一平臺在線形考(作業(yè)一至五)試題及答案
- 國家基本醫(yī)療保險、工傷保險和生育保險藥品目錄(2023年)
- 城市公益公墓區(qū)建設(shè)方案
- 第七單元測試卷-2024-2025學(xué)年語文三年級上冊統(tǒng)編版
評論
0/150
提交評論