版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
傳動軸的受力分析傳動軸兩端在安裝后常常發(fā)主一定的不對中戢-使軸發(fā)生彎曲,也將對軸兩輸聯(lián)軸翻產(chǎn)生支反力.文反力將會便聯(lián)軸器發(fā)生變形;對整個傳動系統(tǒng)的穩(wěn)定性和童全性薩響.從陽需踐通過優(yōu)化it各結(jié)崗尺寸來ft應(yīng)支反力毎小..又由F軸的扭轉(zhuǎn)變瑋要影響機(jī)器的性能和工柞精度'扭轉(zhuǎn)軸太大將會隆低軸的餐功HI度威皿能發(fā)生粗轉(zhuǎn)提功現(xiàn)線,因此,軸也雷具備較犬的WWJ度,即小.綜上所述*以支反力和扭轉(zhuǎn)均為優(yōu)化片標(biāo)。41用奇異函數(shù)和拉氏蠻換法求傳動軸的支辰力與撓度値的關(guān)系在各種機(jī)橄叩人部分軸鬼附梯軸或軸刃處采用曲線過鍍的軸,對這類軸的設(shè)ifil算時.剛盛校核不能直接算出來,不易訐算?常常先捲手冊上列茁的經(jīng)驗公式算斟當(dāng)駅謝名燃肩冉以直進(jìn)仃設(shè)訃訂曾■此甘法蟲計算倚雅?但融茯港一般很人而汁算耕度較高的有限羌分法和有限元法計鼻最大.不易攥作.特別在優(yōu)化設(shè)計吋,數(shù)值汁畀法不易尸程序編寫,而且效率可能很低*木文利用奇舁隔數(shù)和Laplace變SU8SS舎的方法?并將含有過礦曲線的軸蚯似成N階階梯軸米訃算.從階梯軸出發(fā)推導(dǎo)出了其彎曲變常的解析我達(dá)式牌叫此川去可以対任意支承形式*受力狀SL笄種it??式以攻任童階梯數(shù)的軸進(jìn)行計算.井H表達(dá)式具有規(guī)范、統(tǒng)一的形式”可以方便準(zhǔn)確地計舜I從而字出軸的任意議面撓度値C彎曲變形)和支反力(峋束力)一舌關(guān)察的解折表達(dá)式.并易于程序的編寫特尤其當(dāng)對軸址冇tt化R時貝冇軟大的T,程實用價值乜根據(jù)龍門車at床的實際裝配和加工情況,滑枕中傳劫軸可能發(fā)生兩種不對中變■一種是軸兩端交差不對中(如圖4Q]另一種是軸兩端平疔不對中5圖斗"代°代°4(…門?F (4.5)代°代°4(…門?F (4.5)用4」發(fā)生交叉不對中Fig.4.1Crossmisalignment圖4.2發(fā)生平行不對屮
Fig4.2Parallelmisalignment4?1.1軸兩端交遽不對中時支反力與彎曲變形的關(guān)系的解析衷達(dá)式(41)tr先階梯軸撓度訂悄采用如卜'近似撓曲線微分方程沖=^L(41)式中勺(蠱)一作用住軸上的等效我他也(x)—軸的彎曲剛度。(4.2)(4.3)由命異丙數(shù)的定義和積分規(guī)則推出式(42〉和(43)的Laplace變換公式;(4.4)-UJ其中.s為象函數(shù)的自變量如圖4.3所示階梯軸.任截血的彎曲剛度的個數(shù)用奇異函數(shù)衣不為(4.6)(4.6)階梯軸所受的兒中常用銭荷形式如SU3所心幫效綾荷集度qg喪示為
K .L能)=£ 勺)吃“店_?尸 (47)J=l1^43階梯軸結(jié)枸和軸祈受戎簡形式Fig.4.3Steppedshallandshaftsufleredloadingforms將式(4.6)相式(4.7)代入到式(4.1)中可ft}外鵲唇(r尸導(dǎo)Z尸隔鼎-朮卜硼“N<*-切>2+藝4血切(49)根撕式(4.4)和式(4.5)對式(4.8)等號網(wǎng)邊1ftLaplace變換得切解出"$)的我達(dá)式,再對心)取反Laplace變換,從而得出撓度”(工)農(nóng)達(dá)式,并用矩陣形式衣示用口如畑"丄-£|式中N<*-切>2+藝4血切(49)対上述求得的駕曲變形曲線方程進(jìn)行階求導(dǎo),就町紂轉(zhuǎn)和力程兀0(劃。^(x>=y(0)+―-—V"3 >24-VLAUk+—-—y2<x-b{>'+V厶b]k//14.10)? 6%淀7fru 2地卸 "£『此軸在這種情況下屬于靜定軸,可以由靜力平衡方程求hi未知的支反力和支反力偶的關(guān)系,因此可利用式(4.9)和式(4.10)計算階梯軸支反力與彎曲變形(撓度值)之問的關(guān)系,方便于優(yōu)化設(shè)計,例如,如圖4.4所示忌臂階梯軸,從最粗軸到最綱軸是采用如式(4.11)的曲線y=f(x)來過渡的,受力尸的作用.坐標(biāo)原點在軸的托端,左端的支反力巧和支反力偶A/彳姿計入等效找荷集度</(r)中-已知:f4=?=i()n?A/J=/V=10x600=6(X)()Nmm,y(0)=0,”(0)=0,彈性模fi^=1.09x10HPa./w=-9(200“)' 69(200“)、2Lr1.6xJ07 400 2009(t/w=-9(200“)' 69(200“)、2Lr1.6xJ07 400 2009(t-200)、21(400-町15(2-200)
1.6xl07 200 〒 4000SXS200200<x<400(411)100w/?060丿=/(x)lOOww0246QQmnt圖44實例軸結(jié)構(gòu)尺寸Fig44Theinstanceaxisstructuresi/c (4.13)將己知條件代入式⑼中得用)=竺八3兀(…丹型巴宀 (一兀)26用)=竺八3兀(…丹型巴宀 (一兀)26磯6心臺小丿八八2EIa[臺八丿」t(60)4<■32其中?人=人32322^4(xf-lO0)2獷(虧-100)由「?將過渡曲線部分分成N份,計廉述是比絞麻煩,不易筆篦?但是木文所推丫出的介式陽r編程,因此本丈利用vb語言編制求解該會冇過渡曲線的階梯軸的彎曲變形的程序來進(jìn)行計算。x=600mm處的撓度為-0.02990mm.為了驗證計算纟盒果的準(zhǔn)確度,任有限尤分析軟件中對軸進(jìn)行有限元分析.分析結(jié)果如B94.5所示。■?O30093 ■?O30093 ??033405 ??OX6a71a7 ?.010029 ??0O38S1??026749 -.020061 -.013373 -.006683 .2911-05圖4.5有凰元分析結(jié)果Fig.4.5FiniteelemencanaKsisresults由有如兀分析得x=600mm處^-0.030093mm,與本文屮計算方法算彳生1、果只相^0.000193mm.左明木文中所用方法訂畀結(jié)果準(zhǔn)確度比較那4.1.2柚兩端平行不對中時支反力與彎曲變形的關(guān)系的解析表達(dá)式Fig.4,6Originalmodel!<>rccdiagram
Fig.4,6Originalmodel!<>rccdiagramI?l4.7考虔成超靜定軸立力悅生Fig47Consideredtobeingslaticallxindclcnnmatcaxisforcemodell4i「?技丿京模型無法求解支反力的人小,將傳動軸由圖4.6轉(zhuǎn)化成圖4.7的趙諦足輸中間加一個兩倍支反力的力便軸發(fā)牛?-樣的變形,卜面是求尢以力與彎曲變形(撓浚值)的關(guān)系計算.根期材料力學(xué),利有奇丹曲數(shù)和正反拉氏交換來計畀所用奇異甌數(shù)同為式(4.2)和(4.3).利用奇異曲數(shù)將下圖4.8卩階梯軸的所沁世方程“⑴、剪力方程Q⑴和任意戴血抗彎剛度需表示出為圖4.8階悌?軸結(jié)構(gòu)和軸所受坡荷形武Fig4.8Steppedshaftandshaftsuflcrcdloadingforms(4.12)A/(r)=Pi< >[ <x-bt>u(4.12)/>1
(414)(415)(414)(415)訊I述四式U12)5(4.15)代入川「描述軸彎曲變形的歐拉一伯努利方和416)中TOC\o"1-5"\h\z”3=覩 ⑷6)A/(x)然后用止反拉氏變換可以求得階梯軸撓曲線方秤vtx)=>?(())?ycopr4-!-^<r-<J7>3+^A4,件*拾£vxf’i■工利,,、”(417)叫鳳 1=1 如0匕讓 日」式中v(o)>y(o)分別為“0截面處的捉度和轉(zhuǎn)角;夕V 3 、 2 ■<X-X,>丿+3(巧-nJvK-Xj>af<rf劃寸“」八:枷<x-x,>2bt<xt對上式(4.17〉求--階導(dǎo)數(shù)即可得轉(zhuǎn)角的方程1K "?] ]厶「 N「(#(x>=y<?)+-—X2<x-a,>2^64;Pj七話遲2v—如「+》人代W/(4.18)
"S川 f=l2A,0Ml /?!婪想龐能夠利用式(4.17)和式(4.18)計笄疔曲變形(撓度值)與支反力的關(guān)系.作用在軸的匕載荷和支反力、力偶和支反力偶必須是己知的,需要先將支反力和支反力偶(或與其他力的關(guān)系式)求出。對丁佈定軸直苕,支反力可用購力學(xué)平衡方程求得:但起刈超靜定軸.則必須由支廉處的變形協(xié)詭條件來求解.支反力和丈反力假的蝕定:鮒49軸所曼巢屮力和集屮力個不意圖Fig.4.9AxissufferedconcentratedlorccandConcentratedcoupleillustration結(jié)合本文中傳動軸所受力情況,乂加上為了使方法具冇通用性,給田如圖4.9所示的受力情況圖.圖4.9中和Frfiiil算式中的各符號息義為:主動力個數(shù);氐一支反力個數(shù);集中力總數(shù).K=K\+K“入一主動力偶個數(shù);兒一支反力偶個數(shù):/,—集中力偶總數(shù).L=L}+L2:Lj—軸的總長度;?為冷集屮力相對坐標(biāo)麻點的血融令:貞“)=-址]*勺宀1>4益°;=iL i=i」x/=iLNV—§>2+工石血斶〔4.19)zM(x)-I\<x■勺>lM/<r-6/>°貞“)=-址]*勺宀1>4益°;=iL i=i」x/=iLNV—§>2+工石血斶〔4.19)zM(x)-I\<x■勺>lM/<r-6/>°/=i(4.20)(4.21)將上述式(419)、(4.20)和(4.21)代入式(4.17)中可以將其改寫成如下形式也跑)=SNU)十乞6皿宇]人E/g)二也?(0卄7y6.丿■A0“一<|3<x-df>2 厶4.L 、-壬r-耳于十〉"人坊/Mj-附)<4.22)2心iL 皿(4.23)以軸右端截曲的邊界條件:M(3=OQ(Lj^o將式(4.24)代入式(4.22)和(423)中.整理懲臼個0)+弘)”(0心嚴(yán)f+ If. Jb:宀>'^^4//;+t》"口”一bl>24工力出“Mr初)b/=K]41L m fTL m.砒(O)+丄工3s6MH?-Vaj"工石血+T£<aKx^r弋、廳入⑷=:■如嚴(yán))M」勺如讓 Mr. /.v<Lj-af>*Pt+工yMQ/)/?£]+1 +1A)*-1(4.24)(425)工一幻>0片=如)/=心+1心2….K2根抵式(4.25)按己知條杵列出代數(shù)方用組,求卿這個線性代數(shù)力円紐就X以求出支反力(約束丿J)緯嚴(yán)和支反力制(約束力偶)也嚴(yán)(約束力偶經(jīng)訃算后用支反力表示人其中(尸T2…?后九然后把支反力和支反力佻代入式(4.17)中就可以得創(chuàng)任點截血的撓度侑(傳動軸兩雋的爪對中屋)和支反力Z間的關(guān)系慮,進(jìn)而可以討論二〔的關(guān)系,對傳動軸的結(jié)構(gòu)尺寸進(jìn)行優(yōu)化,使其支反力最小.下一帝將以一實例進(jìn)行計算驗旺式子的準(zhǔn)確性.例如.如TB4.10所示.傳動軸的所有參數(shù)尺寸郁已知,為了驗證上述計算方法的正確性,光假汝不対中量為0.5mm,按本文中的計算方法計算出支反力,再將求出氏的支反力當(dāng)作已知作用力代入廉??罩羞M(jìn)行有限元分析?看變形詭9假設(shè)不対斌是否一樣。圖410實例軸結(jié)構(gòu)尺寸Fig.4.10Instanceaxisstnicturcsi/x:白于將過:渡曲線部分分成N份,訃算還是比較麻煩,不易筆算,但是本文所推導(dǎo)円的公式易F?編程,因此本文利用VB訥苕編埒求解該含冇過渡由線的階梯軸啲彎胸變農(nóng)的程序來進(jìn)行計算“運行結(jié)果支反力為:I6O.296N.將求出的支反力代入原模型中進(jìn)行仃限元分析,左端全約束,右端除Y方向,其他方向都約東,在Y方向加力?160296N°運行結(jié)果如陽4」1所示.11079*7 ?221594 .33Z391 .443188.0553M ?166106 ?276?M ? .4WM7S4.ll荷限元分析結(jié)果Fig.411Finiteelementanalysisresults從圖屮可右到加上160.296N的力航疔曲變形量為O.498587mm,與假址的不對中屋0.5mm相0.28%,表明上述計算方法正確.
上章C將支反力打彎曲變形(撓度值)關(guān)系和總田轉(zhuǎn)佝哎民達(dá)示求岀。本章結(jié)合實IS臬型號龍門銃床,來対H滑忱中傳動軸的結(jié)構(gòu)辺彳J矢■,優(yōu)化數(shù)學(xué)検型的計算和程序編寫。圖5」傳動軸的參數(shù)化結(jié)構(gòu)圖Ftg.5.1Parametricslruclurcdiagramofthedrixeshaft5.1兩種不對中的優(yōu)化數(shù)學(xué)模型建立5.1.1交叉不對中時優(yōu)化設(shè)計數(shù)學(xué)模型的建立按第四章中的交叉不對中時支反力與彎曲變形的關(guān)系計算方法式(4.17),由實弘情況冇:y(0)=0.y(0)=0o并取處撓度值與支反力的關(guān)系?因此可得(51)(51)式中工石4產(chǎn)2?0&-產(chǎn)[(—兀卩+3的-訂]:/-II〃/f">丿敖壽。卜右卜訂.V敖壽。卜右卜訂.VN—階梯軸的總階數(shù).戰(zhàn)而的慣性矩/足由過液曲線決銳的.而過渡曲線足關(guān)丁卩和。2的函數(shù),所以支反力與嚴(yán)大撓度值W)的關(guān)系隨山和n2變化而變化.對于抓轉(zhuǎn)角由式(4.26)求得總抑轉(zhuǎn)角弘5=5.亦1(盧丄工2GJI°口5極慣件建/尸也是由過渡曲線決定的.所以總抑轉(zhuǎn)加也是人和幾變化而變化“因業(yè)?優(yōu)化設(shè)計數(shù)學(xué)模型如F冃標(biāo)函數(shù)為;minFa=minFa=F=y(L)6A70min一丙廠十弓也L\Nt[0=5?73xl(f二£亠°i-ilr(5.2)約束條件:0SLjS—厶約束條件:I)</)2</>|其中?/)由第三帝中強(qiáng)度條件和別度條件確定的最小fl徑.5.1.2平行不對中時優(yōu)化設(shè)計數(shù)學(xué)模型的建立按第啊章中的支反力與彎曲變形的關(guān)系計笄方法式(4.25)?由實際情況得:0\^L> tf2a0w03=2£x i)2^2L\ K\^\\K?工2、£.1*0% Lj^1L\y(o)=<).y(o)=oF因此有
£/o>K0>+£/oy(0)fl5+T》<“3-竹>‘+£^4/K/+yX<碼一b]>2+藝入切Mf=:(“3〉TOC\o"1-5"\h\z0/-2L <-1 」z/-iL /-1 .□oH(u)+I3 N1 .2r N7E35Lj八DAP廣理+送入町憶"(円)(5.5)/■2L 1-1 」L/-IL Z3 2<Lj_?;>】匕+》v£j一5>°M(=zA/(Zj)二-P\<Lj_Q]>'嚴(yán)2 f-i32<ZV7丿>°PJYgj尸-八<fji>°/?2將已知條件代入,求解線性方程組(53)得A7|=—A/2=△二"二-九A7|=—A/2=△二"二-九式中式中X/。?[(2-汀+3(兀"2一川-I<人也丿fNf241人1?】丿N/?1二£/(j+-九*乙-西)*+3馮(2乙-為尸]:“1=£/訂=弓丿()+一+ :N—階梯軸的總階數(shù)°將求出的支反力和支反力偶代入式(5」》中?井求“乙處撓度(撓度值用大處》峪支反力的關(guān)系徉
L_g>2*》4L_g>2*》4色1J=l1/3 \ I/?占(八也)-找+12也o 2EJ0因此.支反力(5.4)4A/0巴=嚴(yán)=?訛)/(5.4)4A/0巴=嚴(yán)=?訛)/N—階梯軸的總階數(shù)“截而的慣性矩/是由過渡曲線決圧的,而過渡曲線是關(guān)「丄和心的函數(shù),所以丈反力號最大撓度值的關(guān)系隨D和必變化而變化。對于扭轉(zhuǎn)角由式(4.26)求得總扭轉(zhuǎn)角為:廠,.73x10土極慣性矩?也是由過渡曲線決定的,所以總扭轉(zhuǎn)用也是-和-變化而變化.因此.優(yōu)化設(shè)訃數(shù)學(xué)??缦?;目標(biāo)臥數(shù)為:設(shè)計變雖為:"和型約東條件:”“八牛婦其屮,D是由第三章中強(qiáng)度條件和剛度條件確定曲昴小直彳包5.2評價函數(shù)的確定由丁?木文處理過渡曲線部分時,足把過渡處分成N份,近似成階梯軸來進(jìn)行計算,分的份數(shù)雄多,越粘確。囚此,il算雖比較人,不易丁弘但是ill于及達(dá)式規(guī)范,易于編程,所以叮以采用陽$編得來進(jìn)行優(yōu)化計舁的?,F(xiàn)。MicrosoftVisualBasic 是對不論初學(xué)者?還是專業(yè)開發(fā)人員來說,郝比較輕松方便地開發(fā)血用程序,并H.其是在Windows操作平臺卜?應(yīng)用程序設(shè)計的晟迅速、5W便的匸罠之一1呦?VB只需把需要的控件施放列屏幕卜?的相應(yīng)位胃即町設(shè):計方便用戶操作的圖形界面,非常便于數(shù)據(jù)的輸入與結(jié)果讀取。所以選用VB為程序開發(fā)一匸具來進(jìn)行優(yōu)化程序編勇與計算實現(xiàn).根據(jù)已算岀的支反力和總扭轉(zhuǎn)角的計算液達(dá)式,用VB對兩種不對i|啪況卜-支反力和總扭轉(zhuǎn)金逬行?編凰計算,輸出支反力和總扭杖角更過渡區(qū)KL2和血徑D2的變化的所仃數(shù)據(jù)點,這些點足離敢的數(shù)據(jù)點,本文刊用EXCEL分別価出網(wǎng)種不對屮情況下的支反力和總扭轉(zhuǎn)角隨右過渡區(qū)KL2和立徑D2變化的曲線圖,操作簡單,并表達(dá)削觀,易于比較分析.曲線圖如圖5.2至5.5所示。-?-52-?-52-*-52-?-54總規(guī)轉(zhuǎn)用0-*-5860——帥(52)—刪(54)—躺方6)800:0001200—畑5創(chuàng)——沁-*-52-?-54總規(guī)轉(zhuǎn)用0-*-5860——帥(52)—刪(54)—躺方6)800:0001200—畑5創(chuàng)——沁(50)圖5.2交叉不對中時總扭轉(zhuǎn)角陸過渡區(qū)KL申:亢徑吐的變化曲線Fig.5.2TotaltorsionanglecuncwiththetransitionlengthL;anddiameterD:wheninthecross
misalignment支反力54S658—錢性(52)200 400 6001000—變住(54) 攔1(56) 1200—找性(60)圖53交叉不對中時支反力隨過渡區(qū)kg和n徑6的變化曲線Fig5.3ReactionforcescunewiththetransitionlengthL;anddiamelerD:wheninthecross
misalignment^?*-58—60 線性(521—^tt(54| 線性(56i—刪(581—她(60)總熱誠角■?-30 [ [II:;I l—llv—I,「■?-30 [ [II:;I l—llv—I,「;iI;1II125支反力40010001200過譏儀L圍5.4卩行不對中対忌扭轉(zhuǎn)角陸過渡區(qū)長1<和立徑D?的變化曲紅Fig5.4ReactionforcescurvewiththetransitionlengthL:anddiameterD:whenintheparallel
misalignment-?-54■?56—58-*—60 址性(521 線性(5?——彌(56>——?!tt(5B)——如(60(過渡區(qū)長測55平行不對屮時支反力胡過波區(qū)ML申加令DM變化曲純Fig.5$IotaltorsionanglecurveuithlhetransitionlengthL?anddiameterD,wheninthepanlicl
misalignment從圖52至5.5中可以看到.交叉不對中支反力遠(yuǎn)小「Tfj懷對中時產(chǎn)生的支反力,總扭轉(zhuǎn)角樣,所以只要采用對半行金對中對傳動軸進(jìn)行優(yōu)化計算就可以保證兩種不對中惜況卜艾反力都較小.支反力隨過渡IX長%和宜徑0的增加而増加,而總扭轉(zhuǎn)角隨過渡區(qū)S和口徑”2的增加而減小?因此,支反力和總扭轉(zhuǎn)角是成反比鍵關(guān)系“我們的口標(biāo)處使二冷郁達(dá)到足小仏從圖不可能二占同時取到巌小值的,因此,曳求我們找到i個評價旳數(shù),便二者都盡町能靠近自己的鹹優(yōu)化伯點.所以,本文采用第二卓卞所述的理想點法.并結(jié)果本文的只?體怙況.確定評價函數(shù)為(5.6)/(X)■()'(/??;"+Z?mx)(5.6)Q-5(Zmm?Zmw)&3最終優(yōu)化程序的建立綜1:所述,已將傳動
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人貸款合同電子合同續(xù)簽服務(wù)3篇
- 2025年度個人貨車租賃合同綠色物流服務(wù)標(biāo)準(zhǔn)3篇
- 2025年度個人房屋室內(nèi)裝修設(shè)計與施工環(huán)保評估合同4篇
- 2025年度個人房產(chǎn)投資合作合同范本2篇
- 二零二五年度新型面包磚研發(fā)與應(yīng)用合作協(xié)議4篇
- 征收補(bǔ)償協(xié)議書(2篇)
- 2025年度個人旅游住宿無息分期支付合同2篇
- 鐵礦粉供應(yīng)與采購合同2025版5篇
- 財務(wù)季度報告模板
- 2024年注冊城鄉(xiāng)規(guī)劃師考試題庫附參考答案(滿分必刷)
- 中央2025年國務(wù)院發(fā)展研究中心有關(guān)直屬事業(yè)單位招聘19人筆試歷年參考題庫附帶答案詳解
- 外呼合作協(xié)議
- 小學(xué)二年級100以內(nèi)進(jìn)退位加減法800道題
- 保險公司2025年工作總結(jié)與2025年工作計劃
- GB/T 33629-2024風(fēng)能發(fā)電系統(tǒng)雷電防護(hù)
- 2024淘寶天貓運動戶外羽絨服白皮書-WN8正式版
- 記賬實操-砂石企業(yè)賬務(wù)處理分錄
- 2024屆四川省瀘州市江陽區(qū)八年級下冊數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析
- 全球250個國家中英文名稱及縮寫
- 深靜脈血栓(DVT)課件
- 2023年四川省廣元市中考數(shù)學(xué)試卷
評論
0/150
提交評論