《三角形全等的判定SSS》_第1頁
《三角形全等的判定SSS》_第2頁
《三角形全等的判定SSS》_第3頁
《三角形全等的判定SSS》_第4頁
《三角形全等的判定SSS》_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

12.2三角形全等的判定(1)①AB=DE②BC=EF③CA=FD④∠A=∠D⑤∠B=∠E⑥∠C=∠FABCDEF1、什么叫全等三角形?能夠完全重合的兩個三角形叫

全等三角形。2、全等三角形有什么性質(zhì)?知識回顧情境問題:

小明家的衣櫥上鑲有兩塊全等的三角形玻璃裝飾物,其中一塊被打碎了,媽媽讓小明到玻璃店配一塊回來,請你說說小明該怎么辦?1.只給一個條件(一組對應邊相等或一組對應角相等)。①只給一條邊:②只給一個角:60°60°60°探究:2.給出兩個條件:①一邊一內(nèi)角:②兩內(nèi)角:③兩邊:30°30°30°30°30°50°50°2cm2cm4cm4cm可以發(fā)現(xiàn)按這些條件畫的三角形都不能保證一定全等。已知三角形三條邊分別是4cm,5cm,7cm,畫出這個三角形,把所畫的三角形分別剪下來,并與同伴比一比,發(fā)現(xiàn)什么?探究新知畫法:

(1)畫線段B′C′=BC;

(2)分別以B′、C′為圓心,BA、AC為半徑畫弧,兩弧交于點A′;(3)連接線段A′B′,A′C′.動手操作,驗證猜想思考作圖的結(jié)果反映了什么規(guī)律?你能用文字語言和符號語言概括嗎?三角形全等的判定公理

三邊對應相等的兩個三角形全等.簡寫為“邊邊邊”或“SSS”.思考:你能用“邊邊邊”解釋三角形具有穩(wěn)定性嗎?

判斷兩個三角形全等的推理過程,叫做證明三角形全等。AB=DEBC=EFCA=FDABCDEF用數(shù)學語言表述:在△ABC和△DEF中∴△ABC≌△DEF(SSS){①準備條件:證全等時要用的間接條件要先證好;②三角形全等書寫三步驟:1.寫出在哪兩個三角形中2.擺出三個條件用大括號括起來3.寫出全等結(jié)論證明的書寫步驟:歸納證明:∵D是BC中點,∴BD=DC.

在△ABD與△ACD中,∴△ABD≌△ACD

(SSS).應用所學,例題解析

例如圖,有一個三角形鋼架,AB=AC,AD是連接點A與BC中點D的支架.求證:△ABD≌△ACD.CBDAAB=AC,BD=CD,AD=AD,∵

1.已知AC=FE,BC=DE,點A,D,B,F(xiàn)在一條直線上,AD=FB(如圖),要用“邊邊邊”證明△ABC≌△FDE,除了已知中的AC=FE,BC=DE以外,還應該有什么條件?怎樣才能得到這個條件?解:要證明△ABC≌△FDE,還應該有AB=DF這個條件∵DB是AB與DF的公共部分,且AD=BF∴AD+DB=BF+DB

即AB=DF練一練2.如圖,AB=AC,AE=AD,BD=CE,求證:△AEB≌△ADC。證明:∵BD=CE∴BD-ED=CE-ED,即BE=CD。在△AEB和△ADC中,AB=ACAE=ADBE=CD∴△AEB≌△ADC(SSS)CABDE{3、如圖,在四邊形ABCD中,AB=CD,AD=CB,求證:∠

A=∠C.

證明:在△ABD和△CDB中DABCAB=CDAD=CBBD=DB∴△ABD≌△ACD(SSS)(已知)(已知)(公共邊)∴∠A=∠C

(全等三角形的對應角相等)你能說明AB∥CD,AD∥BC嗎?4、如圖,AB=AC,BD=CD,BH=CH,圖中有幾組全等的三角形?它們?nèi)鹊臈l件是什么?HDCBA解:有三組。在△ABH和△ACH中∵AB=AC,BH=CH,AH=AH∴△ABH≌△ACH(SSS);∵BD=CD,BH=CH,DH=DH∴△DBH≌△DCH(SSS)在△ABH和△ACH中∵AB=AC,BD=CD,AD=AD∴△ABD≌△ACD(SSS);在△ABH和△ACH中解:①∵E、F分別是AB,CD的中點()又∵AB=CD∴AE=CF在△ADE與△CBF中AE==∴△ADE≌△CBF()∴AE=ABCF=CD()1212補充練習:如圖,已知AB=CD,AD=CB,E、F分別是AB,CD的中點,且DE=BF,說出下列判斷成立的理由.①△ADE≌△CBF②∠A=∠C線段中點的定義CFADABCDSSS△ADE≌△CBF全等三角形對應角相等已知ADBCFECB②∵∴∠A=∠C()=BCBC△DCBBF=DC或BD=FCABCD解:△ABC≌△DCB理由如下:AB=CDAC=BD=△ABD≌

()

SSS如圖,AB=CD,AC=BD,△ABC和△DCB是否全等?試說明理由。(2)如圖,D、F是線段BC上的兩點,AB=CE,AF=DE,要使△ABF≌△ECD,還需要什么條件

?

AE

BDFC

作法:(1)以點O為圓心,任意長為半徑畫弧,分別交OA,OB于點C、D;(2)畫一條射線O′A′,以點O′為圓心,OC長為半徑畫弧,交O′A′于點C′;(3)以點C′為圓心,CD長為半徑畫弧,與第2步中所畫的弧交于點D′;(4)過點D′畫射線O′B′,則∠A′O′B′=∠AOB.

已知:∠AOB.求作:∠A′O′B′=∠AOB.用尺規(guī)作一個角等于已知角.應用所學,例題解析作法:

(1)以點O為圓心,任意長為半徑畫弧,分別交OA,

OB于點C、D;

已知:∠AOB.求作:∠A′O′B′=∠AOB.用尺規(guī)作一個角等于已知角.應用所學,例題解析ODBCA作法:

(2)畫一條射線O′A′,以點O′為圓心,OC長為半徑畫弧,交O′A′于點C′;

已知:∠AOB.求作:∠A′O′B′=∠AOB.用尺規(guī)作一個角等于已知角.應用所學,例題解析O′C′A′ODBCA作法:

(3)以點C′為圓心,CD長為半徑畫弧,與第2步中所畫的弧交于點D′;

已知:∠AOB.求作:∠A′O′B′=∠AOB.用尺規(guī)作一個角等于已知角.應用所學,例題解析O′D′C′A′ODBCA作法:

(4)過點D′畫射線O′B′,則∠A′O′B′=∠AOB.

已知:∠AOB.求作:∠A′O′B′=∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論