上海市廊下中學2022年數(shù)學九年級第一學期期末統(tǒng)考試題含解析_第1頁
上海市廊下中學2022年數(shù)學九年級第一學期期末統(tǒng)考試題含解析_第2頁
上海市廊下中學2022年數(shù)學九年級第一學期期末統(tǒng)考試題含解析_第3頁
上海市廊下中學2022年數(shù)學九年級第一學期期末統(tǒng)考試題含解析_第4頁
上海市廊下中學2022年數(shù)學九年級第一學期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.下列四組、、的線段中,不能組成直角三角形的是()A.,, B.,,C.,, D.,,2.如圖,△ABC內(nèi)接于⊙O,若∠A=α,則∠OBC等于()A.180°﹣2α B.2α C.90°+α D.90°﹣α3.若將二次函數(shù)的圖象先向左平移2個單位長度,再向下平移2個單位長度,則所得圖象對應函數(shù)的表達式為()A. B.C. D.4.設a、b是兩個整數(shù),若定義一種運算“△”,a△b=a2+b2+ab,則方程(x+2)△x=1的實數(shù)根是()A.x1=x2=1 B.x1=0,x2=1C.x1=x2=﹣1 D.x1=1,x2=﹣25.已知,如圖,點C,D在⊙O上,直徑AB=6cm,弦AC,BD相交于點E,若CE=BC,則陰影部分面積為()A. B. C. D.6.如圖,在⊙O中,弦AB的長為8,圓心O到AB的距離為3,則⊙O的半徑為()A.10 B.8 C.7 D.57.若關于的一元二次方程有兩個相等的根,則的值為()A. B. C.或 D.或8.拋物線y=x2+2x+3的對稱軸是()A.直線x=1 B.直線x=-1C.直線x=-2 D.直線x=29.關于x的方程的兩個根是-2和1,則的值為()A.-8 B.8 C.16 D.-1610.如圖,∠A是⊙O的圓周角,∠A=40°,則∠OBC=()A.30° B.40° C.50° D.60°二、填空題(每小題3分,共24分)11.如圖,將一張矩形紙片ABCD沿對角線BD折疊,點C的對應點為,再將所折得的圖形沿EF折疊,使得點D和點A重合若,,則折痕EF的長為______.12.已知函數(shù)(為常數(shù)),若從中任取值,則得到的函數(shù)是具有性質(zhì)“隨增加而減小”的一次函數(shù)的概率為___________.13.函數(shù)是關于反比例函數(shù),則它的圖象不經(jīng)過______的象限.14.若關于的一元二次方程沒有實數(shù)根,則的取值范圍是__________.15.如圖,點的坐標為,過點作軸的垂線交過原點與軸夾角為的直線于點,以原點為圓心,的長為半徑畫弧交軸正半軸于點;再過點作軸的垂線交直線于點,以原點為圓心,以的長為半徑畫弧交軸正半軸于點……按此做法進行下去,則點的坐標是_____.16.若關于x的一元二次方程x2+2x+m﹣2=0有實數(shù)根,則m的值可以是__.(寫出一個即可)17.如圖,在四邊形ABCD中,AD∥BC∥EF,EF分別與AB,AC,CD相交于點E,M,F(xiàn),若EM:BC=2:5,則FC:CD的值是_____.18.不透明袋子中裝有7個球,其中有3個紅球,4個黃球,這些球除顏色外無其他差別,從袋子中隨機取出1個球,則它是紅球的概率是_____.三、解答題(共66分)19.(10分)中,∠ACB=90°,AC=BC,D是BC上一點,連接AD,將線段AD繞著點A逆時針旋轉(zhuǎn),使點D的對應點E在BC的延長線上。過點E作EF⊥AD垂足為點G,(1)求證:FE=AE;(2)填空:=__________(3)若,求的值(用含k的代數(shù)式表示).20.(6分)在一個不透明的盒子中,共有三顆白色和一顆黑色圍棋棋子,它們除了顏色之外沒有其他區(qū)別.隨機地從盒子中取出一顆棋子后,不放回再取出第二顆棋子,請用畫樹狀圖或列表的方法表示所有結(jié)果,并求出恰好取出“一白一黑”兩顆棋子的概率.21.(6分)如圖,已知二次函數(shù)的圖象與軸交于兩點(點在點的左側(cè)),與軸交于點,頂點為點.(1)點的坐標為,點的坐標為;(用含有的代數(shù)式表示)(2)連接.①若平分,求二次函數(shù)的表達式;②連接,若平分,求二次函數(shù)的表達式.22.(8分)已知二次函數(shù)的圖象和軸交于點、,與軸交于點,點是直線上方的拋物線上的動點.(1)求直線的解析式.(2)當是拋物線頂點時,求面積.(3)在點運動過程中,求面積的最大值.23.(8分)解下列方程(1);(2).24.(8分)如圖所示,AD,BE是鈍角△ABC的邊BC,AC上的高,求證:.25.(10分)在一個不透明的袋子中,裝有除顏色外都完全相同的4個紅球和若干個黃球.如果從袋中任意摸出一個球是紅球的概率為,那么袋中有黃球多少個?在的條件下如果從袋中摸出一個球記下顏色后放回,再摸出一個球,用列表或畫樹狀圖的方法求出兩次摸出不同顏色球的概率.26.(10分)如圖,四邊形ABCD為菱形,以AD為直徑作⊙O交AB于點F,連接DB交⊙O于點H,E是BC上的一點,且BE=BF,連接DE.(1)求證:DE是⊙O的切線.(2)若BF=2,BD=2,求⊙O的半徑.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據(jù)勾股定理的逆定理判斷三角形三邊是否構成直角三角形,依次計算判斷得出結(jié)論.【詳解】A.∵,,∴,A選項不符合題意.B.∵,,∴,B選項符合題意.C.∵,,∴,C選項不符合題意.D.∵,∴,D選項不符合題意.故選:B.【點睛】本題考查三角形三邊能否構成直角三角形,熟練逆用勾股定理是解題關鍵.2、D【解析】連接OC,則有∠BOC=2∠A=2α,∵OB=OC,∴∠OBC=∠OCB,∵∠OBC+∠OCB+∠BOC=180°,∴2∠OBC+2α=180°,∴∠OBC=90°-α,故選D.3、C【分析】根據(jù)拋物線的平移規(guī)律:上加下減,左加右減解答即可.【詳解】解:將的圖象先向左平移2個單位長度,再向下平移2個單位長度,則所得二次函數(shù)的表達式為:.故選:C.【點睛】本題考查了拋物線的平移,屬于基本知識題型,熟練掌握拋物線的平移規(guī)律是解題的關鍵.4、C【解析】根據(jù)題中的新定義將所求方程化為普通方程,整理成一般形式,左邊化為完全平方式,用直接開平方的方法解方程即可.【詳解】解:∵a△b=a2+b2+ab,∴(x+2)△x=(x+2)2+x2+x(x+2)=1,整理得:x2+2x+1=0,即(x+1)2=0,解得:x1=x2=﹣1.故選:C.【點睛】此題考查了解一元二次方程﹣配方法,利用此方法解方程時,首先將方程二次項系數(shù)化為1,常數(shù)項移到方程右邊,然后方程左右兩邊都加上一次項系數(shù)一半的平方,左邊化為完全平方式,右邊合并為一個非負常數(shù),開方轉(zhuǎn)化為兩個一元一次方程來求解.5、B【分析】連接OD、OC,根據(jù)CE=BC,得出∠DBC=∠CEB=45°,進而得出∠DOC=90°,根據(jù)S陰影=S扇形-S△ODC即可求得.【詳解】連接OD、OC,∵AB是直徑,∴∠ACB=90°,∵CE=BC,∴∠CBD=∠CEB=45°,∴∠COD=2∠DBC=90°,∴S陰影=S扇形?S△ODC=?×3×3=?.故答案選B.【點睛】本題考查的知識點是扇形面積的計算,解題的關鍵是熟練的掌握扇形面積的計算.6、D【分析】根據(jù)垂徑定理可得出AE的值,再根據(jù)勾股定理即可求出答案.【詳解】解:∵OE⊥AB,∴AE=BE=4,∴.故選:D.【點睛】本題考查的知識點是垂徑定理,根據(jù)垂徑定理得出AE的值是解此題的關鍵.7、B【分析】把化為一元二次方程的一般形式,根據(jù)一元二次方程的判別式列方程求出b值即可.【詳解】∵,∴x2+(b-1)x=0,∵一元二次方程有兩個相等的根,∴(b-1)2-4×1×0=0,解得:b=1,故選:B.【點睛】本題考查一元二次方程根的判別式,對于一元二次方程ax2+bx+c=0(a≠0),根的判別式△=b2-4ac,當△>0時,方程有兩個不相等的實數(shù)根;當△=0時,方程有兩個相等的實數(shù)根;當△<0時,方程沒有實數(shù)根.熟練掌握一元二次方程根的判別式是解題關鍵.8、B【分析】根據(jù)拋物線的對稱軸公式:計算即可.【詳解】解:拋物線y=x2+2x+3的對稱軸是直線故選B.【點睛】此題考查的是求拋物線的對稱軸,掌握拋物線的對稱軸公式是解決此題的關鍵.9、C【解析】試題解析:∵關于x的方程的兩個根是﹣2和1,∴=﹣1,=﹣2,∴m=2,n=﹣4,∴=(﹣4)2=1.故選C.10、C【分析】根據(jù)一條弧所對的圓周角等于它所對的圓心角的一半求得∠BOC,再根據(jù)三角形的內(nèi)角和定理以及等腰三角形的兩個底角相等進行計算.【詳解】解:根據(jù)圓周角定理,得∠BOC=2∠A=80°∵OB=OC∴∠OBC=∠OCB==50°,故選:C.【點睛】本題考查了圓周角定理,等腰三角形的性質(zhì),三角形內(nèi)角和定理,掌握圓周角定理是解題的關鍵.二、填空題(每小題3分,共24分)11、【分析】首先由折疊的性質(zhì)與矩形的性質(zhì),證得是等腰三角形,則在中,利用勾股定理,借助于方程即可求得AN的長,又由≌,易得:,由三角函數(shù)的性質(zhì)即可求得MF的長,又由中位線的性質(zhì)求得EM的長,則問題得解【詳解】如圖,設與AD交于N,EF與AD交于M,根據(jù)折疊的性質(zhì)可得:,,,四邊形ABCD是矩形,,,,,,,設,則,在中,,,,即,,,,≌,,,,,,由折疊的性質(zhì)可得:,,,,,故答案為.【點睛】本題考查了折疊的性質(zhì),全等三角形的判定與性質(zhì),三角函數(shù)的性質(zhì)以及勾股定理等知識,綜合性較強,有一定的難度,解題時要注意數(shù)形結(jié)合思想與方程思想的應用.12、【分析】根據(jù)“隨增加而減小”可知,解出k的取值范圍,然后根據(jù)概率公式求解即可.【詳解】由“隨增加而減小”得,解得,∴具有性質(zhì)“隨增加而減小”的一次函數(shù)的概率為故答案為:.【點睛】本題考查了一次函數(shù)的增減性,以及概率的計算,熟練掌握一次函數(shù)增減性與系數(shù)的關系和概率公式是解題的關鍵.13、第一、三象限【解析】試題解析:函數(shù)是關于的反比例函數(shù),解得:比例系數(shù)它的圖象在第二、四象限,不經(jīng)過第一、三象限.故答案為第一、三象限.14、【分析】根據(jù)根判別式可得出關于的一元一次不等式組,解不等式組即可得出結(jié)論.【詳解】由于關于一元二次方程沒有實數(shù)根,∵,,,∴,解得:.故答案為:.【點睛】本題考查了一元二次方程為常數(shù))的根的判別式.當0,方程有兩個不相等的實數(shù)根;當0,方程有兩個相等的實數(shù)根;當0,方程沒有實數(shù)根.15、【分析】先根據(jù)一次函數(shù)方程式求出B1點的坐標,再根據(jù)B1點的坐標求出A2點的坐標,得出B2的坐標,以此類推總結(jié)規(guī)律便可求出點B2019的坐標.【詳解】∵過點A1作x軸的垂線交過原點與x軸夾角為的直線l于點B1,OA1=2,∴∠B1OA1=60,∴∠OB1A1=30∴OB1=OA1=4,B1A1=∴B1(2,)∴直線y=x,以原O為圓心,OB1長為半徑畫弧x軸于點A2,則OA2=OB1,∵OA2=4,∴點A2的坐標為(4,0),∴B2的坐標為(4,4),即(22,22×),OA3=∴點A3的坐標為(8,0),B3(8,8),……,以此類推便可得出點A2019的坐標為(22019,0),點B2019的坐標為;故答案為:.【點睛】本題主要考查了點的坐標規(guī)律、一次函數(shù)圖象上點的坐標特征、勾股定理等知識;由題意得出規(guī)律是解題的關鍵.16、3.【分析】根據(jù)根的判別式即可求出答案.【詳解】由題意可知:△=4﹣4(m﹣2)≥0,∴m≤3.故答案為:3.【點睛】考核知識點:一元二次方程根判別式.熟記根判別式是關鍵.17、3【解析】首先得出△AEM∽△ABC,△CFM∽△CDA,進而利用相似三角形的性質(zhì)求出即可.【詳解】∵AD∥BC∥EF,∴△AEM∽△ABC,△CFM∽△CDA,∵EM:BC=2:5,∴AMAC設AM=2x,則AC=5x,故MC=3x,∴CMAC故答案為:35【點睛】此題主要考查了相似三角形的判定與性質(zhì),得出AMAC18、【解析】根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【詳解】解:∵袋子中共有7個球,其中紅球有3個,∴從袋子中隨機取出1個球,它是紅球的概率是,故答案為:.【點睛】本題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.三、解答題(共66分)19、(1)證明見解析;(2);(3).【分析】(1)由得,由∠AGH=∠ECH=90°可得∠DAC=∠BEF,由軸對稱的性質(zhì)得到∠DAC=∠EAC,從而可得∠BEF=∠EAC,利用三角形外角的性質(zhì)得到,即可得到結(jié)論成立;(2)過點E作EM⊥BE,交BA延長線于點M,作AN⊥ME于N,先證明,得到BF=AM,再利用等腰直角三角形的性質(zhì)和矩形的性質(zhì)得到,DE=2CE=2AN,即可得到答案;(3)先利用相似三角形的判定證明,得到,從而得到,再證明,即可得到.【詳解】(1)證明:∵,,∵垂足為點,,∵,,∵,,∵,,在和中,,,,,,∵,,,;(2)如圖,過點E作EM⊥BE,交BA延長線于點M,作AN⊥ME于N,∵∠ACB=90°,AC=BC,∴∠B=45°,∵EM⊥BE,∴∠M=∠B=45°,由(1)已證:,,即,在和中,,∴,∴BF=AM,∵AN⊥ME,∠M=45°,∴是等腰直角三角形,∴AN=MN,AM=,易知四邊形ACEN是矩形,∴CE=AN=MN,∵DE=2CE=2AN,∴,故答案為:;(3)∵,,,∵,由(1)知,,由(1)知,,,設,,則,,,,,,∵,,,.【點睛】本題考查了相似三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),三角形的外角性質(zhì),全等三角形的判定和性質(zhì),以及等角對等邊等性質(zhì),解題的關鍵是熟練掌握相似三角形的判定和性質(zhì)進行解題,注意角度之間的相互轉(zhuǎn)換.20、【分析】根據(jù)樹狀圖列舉所有等可能的結(jié)果與“一白一黑”的情況,再利用概率公式即可求解.【詳解】解:樹狀圖如下,由樹狀圖可知,共有12種結(jié)果,且每種結(jié)果出現(xiàn)的可能性是相同的,其中“一白一黑”有6種,所以恰好取出“一白一黑”兩顆棋子的概率為.【點睛】本題考查用列表法或樹狀圖求兩步事件概率問題,區(qū)分“放回”事件和“不放回”事件是解答此題的關鍵.21、(1),;(2)①,②【解析】(1)令y=0,解關于x的方程,解方程即可求出x的值,進而可得點B的坐標;把拋物線的解析式轉(zhuǎn)化為頂點式,即可得出點D的坐標;(2)①如圖1,過點作,交于點,作DF⊥y軸于點F,則易得點C的坐標與CF的長,利用BH的長和∠B的正切可求出HE的長,進而可得DE的長,由題意和平行線的性質(zhì)易推得,然后可得關于m的方程,解方程即可求出m的值,進而可得答案;(3)如圖2,過點B作BK∥y軸,過點C作CK∥x軸交BK于點K,交DH于點G,連接AE,利用銳角三角函數(shù)、拋物線的對稱性和等腰三角形的性質(zhì)可推出,進而可得,然后利用勾股定理可得關于m的方程,解方程即可求出m,問題即得解決.【詳解】解:(1)令y=0,則,解得:,∴點的坐標為;∵,∴點的坐標為;故答案為:,;(2)①如圖1,過點作于點H,交于點,作DF⊥y軸于點F,則,,DF=m,CF=,∵平分,∴∠BCO=∠BCD,∵DH∥OC,∴∠BCO=∠DEC,∴∠BCD=∠DEC,∴,∵,BH=2m,∴,∴,∵,∴,∴,解得:(舍去),∴二次函數(shù)的關系式為:;②如圖2,過點B作BK∥y軸,過點C作CK∥x軸交BK于點K,交DH于點G,連接AE,∵,∴,∴,∵EA=EB,∴∠3=∠4,又∵,∴,∵,,∴,∴,∴,即,解得:(舍去),∴二次函數(shù)的關系式為:.【點睛】本題考查了二次函數(shù)的圖象與性質(zhì)、拋物線圖象上點的坐標特征、角平分線的性質(zhì)、等腰三角形的判定和性質(zhì)、三角形的外角性質(zhì)、勾股定理、銳角三角函數(shù)和一元二次方程的解法等知識,綜合性強、難度較大,正確作出輔助線、利用勾股定理構建方程、熟練掌握上述知識是解答的關鍵.22、(1);(2)3;(3)面積的最大值為.【分析】(1)由題意分別將x=0、y=0代入二次函數(shù)解析式中求出點C、A的坐標,再根據(jù)點A、C的坐標利用待定系數(shù)法即可求出直線AC的解析式;(2)由題意先根據(jù)二次函數(shù)解析式求出頂點,進而利用割補法求面積;(3)根據(jù)題意過點作軸交于點并設點的坐標為(),則點的坐標為進而進行分析.【詳解】解:(1)分別將x=0、y=0代入二次函數(shù)解析式中求出點C、A的坐標為;;將;代入,得到直線的解析式為.(2)由,將其化為頂點式為,可知頂點P為,如圖P為頂點時連接PC并延長交x軸于點G,則有,將P點和C點代入求出PC的解析式為,解得G為,所有=3;(3)過點作軸交于點.設點的坐標為(),則點的坐標為∴,當時,取最大值,最大值為.∵,∴面積的最大值為.【點睛】本題考查待定系數(shù)法求一次函數(shù)解析式、二次函數(shù)圖象上點的坐標特征、等腰三角形的性質(zhì)、二次函數(shù)的性質(zhì)以及解二元一次方程組,解題的關鍵是利用待定系數(shù)法求出直線解析式以及利用二次函數(shù)的性質(zhì)進行綜合分析.23、(1),;(2),.【分析】(1)利用因式分解法解方程;(2)先變形為(2x-1)2-(x-3)2=0,然后利用因式分解法解方程.【詳解】(1),或,所以,;(2),,或,所以,.【點睛】本題考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右邊化為0,再把左邊通過因式分解化為兩個一次因式的積的形式,那么這兩個因式的值就都有可能為0,這就能得到兩個一元一次方程的解,這樣也就把原方程進行了降次,把解一元二次方程轉(zhuǎn)化為解一元一次方程的問題了(數(shù)學轉(zhuǎn)化思想).24、見解析.【分析】根據(jù)兩角相等的兩個三角形相似證明△ADC∽△BEC即可.【詳解】證明:∵AD,BE分別是BC,AC上的高∴∠D=∠E=90°又∠ACD=∠BCE(對頂角相等)∴△ADC∽△BEC∴.【點睛】本題考查了相似三角形的判定,熟練掌握形似三角形的判定方法是解答本題的關鍵.①有兩個對應角相等的三角形相;②有兩個對應邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應邊的比相等,則兩個三角形相似.25、(1)袋中有黃球有2個(2)【解析】設袋中黃球有x個,根據(jù)任意摸出一個球是紅球的概率為列出關于x的方程,解之可得;

列表得出所有等可能結(jié)果,從中找到符合條件的結(jié)果數(shù),再根據(jù)概率公式計算可得.【詳解】設袋中黃球有x個,根據(jù)題意,得:,解得,經(jīng)檢驗是原分式方程的解,,即袋中有黃球有2個;列表如

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論